10 Trends in Workforce Analytics (英文)
Workforce analytics is developing and maturing. These are the 10 major trends for the near future.
1. From one time to real-time
Many workforce analytics efforts start as a consultancy project. A question is formulated (“How do our employees experience their journey?”), many people are interviewed, data is gathered, and with the help of the external consultants a nice report is written and many follow up projects to redesign the employee journey are defined.
A one-time effort is nice, but it might be more beneficial to develop ways to gather more regularly and maybe even real-time feedback from candidates, employees and other relevant groups.
The survey practice is changing. We see organizations using several approaches:
The classic annual or bi-annual employee survey, for a deep dive.
Weekly, monthly or quarterly pulse surveys to gather more frequent feedback. A few questions, often varying the questions per cycle. Some more advanced pulse survey solutions are adaptive: they ask more questions to people when they sense there are issues (“How was your week?”. If the answer is “Very Good”, the survey is finished, if you answer, “Not so good”, there are some follow-up questions). Pulse surveys can also be easily connected to the important “moments that matter” for the employee experience.
Continuous real-time mood measurement. Innovative solutions in this area are still scarce, especially if you want to measure in a passive non-obtrusive way. Keencorp is an example, they analyze aggregated e-mails and can report on the mood (and risks) in different parts of an organization.
In my article Employee mood measurement trends, you can find an extensive overview of mood measurement providers.
2. From people analytics to workforce analytics
Currently, the general opinion seems to be that people analytics is a better label than HR analytics.
Increasingly the workforce is consisting of more than just people. Robots and chatbots are entering the workforce. The first legal discussions have started: who is responsible for the acts of the robots?
If we’re also analyzing robots, we’re moving from people analytics towards workforce analytics. Robot wellbeing and robot productivity is a nice domain for HR to claim.
3. More transparency
This overview of workforce analytics trends cannot be complete without a reference to GDPR. GDPR is fueling a lot of positive developments, one of them being a lot more transparency. About what kind of data is collected, how it is used, and how algorithms are used to make decisions about people.
The issue of data ownership is related. It is expected that employees will no longer accept that they cannot own their own personal data. Employees need to have the possibility to show their data to their potential next employer as evidence for their productivity and engagement.
4. More focus on productivity
In the last years, there has not been a lot of focus on productivity. We see a slow change at the horizon.
Traditionally, capacity problems have been solved by recruiting new people. This has led to several problems. I have seen this several times in fast growing scale-ups.
As the growth is limited by the ability the find new people, the selection criteria are (often unconsciously) lowered, as many people are needed fast. These new people are not as productive as the existing crew. Because you have more people, you need more managers. Lower quality people and more managers lowers productivity.
Another approach is, to focus more on increasing the productivity of the existing employees, instead of hiring additional staff, and on improving the selection criteria.
Using workforce analytics, you can try to find the characteristics of top performing people and teams, and the conditions that facilitate top performance.
These findings can be used to increase productivity and to select candidates that have the characteristics of top performers. When productivity increases, you need less people to deliver the same results.
A related read on this topic are the 3 reasons to stop counting heads.
5. What is in it for me?
A lack of trust can influence many workforce analytics efforts. If the focus is primarily on efficiency and control, employees will doubt if there are any benefits for them.
Overall there is a shift to more employee-centric organizations, although sometimes you can doubt how genuine the efforts are to improve the employee experience.
Asking the question: “How will the employees benefit from this effort?” is a good starting point for most workforce analytics projects. It also helps to create buy-in, which becomes increasingly important with the introduction of the GPDR.
6. From individuals to teams to networks
Many workforce analytics projects today are still focused on individuals. What are the characteristics of our top performers? How can we measure the individual employee experience? How can we decrease absenteeism?
Earlier, I gave an overview to what extend current HR practices are focused on teams.
As you can see in the table, most of the practices are still very focused on the individual. Workforce analytics can help to improve the way teams and networks function in and across organizations. The rise of Organizational Network Analysis is one of the promising signs.
7. Cracks in the top-down approach
The tendency to implement changes top-down, is still common.
We like uniformity and standardization. In our central control room, we look at our dashboard, and we know we need to act when the lights are turning from green to orange.
HR finds it difficult to approach issues in a different way. Performance management is a good example. Changing the performance management process is often tackled as an organization-wide issue, and HR needs to find the new uniform solution.
In line with the trend called “the consumerization of HR”, employees are expected to take more initiative. Employees are increasingly tired of waiting for the organization and HR, and want to be more independent of organizational initiatives.
If you want feedback, you can easily organize it yourself, for example with the Slack plug-in Captain Feedback. A simple survey to measure the mood in your team is quickly built with Polly (view: “How to measure the mood in your team with Slack and Polly“). Many employees are already tracking their own fitness with trackers like Fitbit and the Apple Watch.
Many teams primarily use communication tools as WhatsApp and Slack, avoiding the officially approved communication channels. HR might go with the flow, and tap on to the channels used, instead of trying to promote standardized and approved channels.
How can workforce analytics benefit from the data gathered by on their employee’s own devices? If it is clear, what the benefits are for employees to share their data, they might be able to help to enrich the data sets and improve the quality of workforce analytics.
8. Ignoring the learning curve
In their book “Making HR measurement strategic”, Wayne Cascio and John Boudreau presented an often-quoted picture, with the title “Hitting the “Wall” in HR measurement”. The wall was the wall between descriptive and predictive analytics.
There are many more overviews with the people analytics maturity levels. Generally, the highest level is predictive analytics.
Patrick Coolen of ABN AMRO Bank recently mentioned a next level: continuous analytics, and he introduced a second wall, the wall between predictive analytics and continuous analytics.
As predictive analytics seems to be the holy grail, many HR teams want to jump immediately to this level. Let’s skip operational reporting, advanced reporting and strategic analytics. We can leapfrog, ignore the learning curve, and jump to the highest level in one step.
For many teams, ignoring the learning curve does not seem to be a sensible strategy. Maybe it is better to learn walking before you start running.
9. Give us back our time!
Recently I spoke to HR professionals from big multinationals who were involved in a “Give us back our time” projects.
In their organizations, the assignment to all staff groups was: stop using (meant was: wasting) more and more time of the employees and managers, please give us some time back!
An example that was mentioned concerned performance management. In this organization, they calculated that all the work around the performance management process for one employee costed manager and employee around 10 hours (preparation, two formal meetings per year, completing the online forms, meeting with HR to review the results etc.).
By simplifying the process (no mandatory meetings, no forms, no review meetings, just one annual rating to be submitted per employee by the manager), HR could give back many hours to the organization – to the relief of both managers and employees.
Big HR systems generally promise a lot. But before the system can live up to the high expectations, a lot of work needs to be done. Data fields must be defined. Global processes must be standardized. Heritage systems must be dismantled.
This results in a lot of work (and agony), for employees, for managers, for HR and for the implementation partners (who do not mind).
Workforce analytics can help a lot in the “give-us-time-back” projects, for example by some simple time-measurement. Measure the time a sample of managers, employees, and HR professionals spend on different activities, and estimate the value these activities optimizes the core activities of the organization (e.g. serving clients and bringing in new clients).
10. Too high expectations
The expectations of workforce analytics are often too high. Two elements must be considered.
In the first place, human behavior is not so easy to predict, even if you have access to loads of people data.
Even in domains where good performance is very well defined and where a lot of data is gathered inside and outside the field, as for example in football, it is very difficult to predict the future success of young players.
Secondly, the question is to what extend managers, employees and HR professionals behave in a rational way. All humans are prone to cognitive biases, that influence the way they interpret the outcomes of workforce analytics projects. Some interesting articles on this subject are why psychological knowledge is essential to success with people analytics, by Morten Kamp Andersen, and The psychology of people analytics, written by myself.
A more general thought: what if you replaced ‘Workforce analytics’ with ‘Science’? What is the role of science in HR? The puzzle is, that there are many scientific findings that have been available for a long time but that are hardly used in organizations.
Example: it has been proven repeatedly, that the (unstructured) interview is a very poor selection instrument.
But still, most organizations still rely heavily on this instrument (as people tend to overestimate their own capabilities). Why would organizations rely on the outcomes of workforce analytics, when they hardly use scientific findings in the people domain?
An interesting presentation on this topic that I recommend is by Rob Briner, titled evidence-based HR, what is it and is it really happening?
There’s a lot that’s changing in the world of work. These are the 10 trends in workforce analytics that I’m seeing today and that will likely impact the way we work in the near future.
This article is based on a keynote I gave at the Workforce Analytics Forum in Frankfurt, Germany, on April 18, 2018.
by Tom Haak
Tom Haak is the director of the HR Trend Institute The HR (Human Resources) Trend Institute follows, detects and encourages trends. In the people and organization domain and in related areas. Where possible, the institute is also a trend setter. Tom has an extensive experience in HR Management in multinational companies. He worked in senior HR positions at Fugro, Arcadis, Aon, KPMG and Philips Electronics. He holds a master’s degree in Psychology. Tom has a keen interest in innovative HR, HR tech and how organizations can benefit from trend shifts. Twitter: @tomwhaak
People Analytics
2018年06月27日
People Analytics
人工智能与自动化在HR与未来劳动力中的影响和应用文|Soumyasanto Sen
来源|Digital HR Tech
人工智能(AI)几十年来一直在改变我们的生活,但今天它的存在感比以往都要大得多。有时候,当一个新的人工智能驱动的系统,工具或产品出现并超越我们人类时,我们甚至都没意识到这个事实。事实上,人工智能正在影响着各种各样的人类生活,从以下几个方面来看:
繁琐,耗时的任务的自动化;
人类能力的增强和;
人类功能的放大。
“虽然这种AI技术的大部分使用目前非常简单,但它正在彻底改变我们的日常生活; 无论是职业上还是个人生活中。”
然而,人力资源和劳动力的人工智能和自动化的好处并不是即时产生的。这是一段旅程,人们可以看到自动化过程的短期收益,增强的中期收益以及最终扩大人类活动或任务的长期收益。
让我们更详细地看看人工智能和自动化对人力资源和劳动力的各种影响。首先,我们来看看历史上是怎么说的,以及这种向人工智能和自动化的转变如何持续了很长时间。之后,我们将探讨我们如何采用这项新技术,以及作为一个组织前进的基本策略是什么,同时将潜在威胁转化为机遇。
人工智能与人力资源自动化:影响与现状
如今人工智能无处不在,关于它如何影响工作的未来,则需要考虑很多方面。
“现在它几乎可以渗透到每一个软件中,”德勤的Bersin负责人兼创始人Josh Bersin说。根据德勤Bersin的研究,近40%的公司仅在人力资源部门就会使用某种形式的AI。
据Personnel Today介绍,38%的企业已经在他们的工作场所使用人工智能,62%的人希望早在今年就开始使用。根据德勤的Bersin,33%的员工预计在不久的将来他们的工作将会增加与AI的协作。
人工智能存在于几乎所有主要行业,从医疗保健到广告,交通,金融,法律,教育以及现在也在我们的工作场所。
我们已经越来越多地在个人生活中使用聊天机器人和虚拟助手,现在我们也可以期望在工作场所中使用它们。例如,AI协助我们找到新工作,回答常见问题,或接受辅导和指导。在组织中使用AI可以帮助我们创建更加无缝,更灵活,更偏向用户驱动的员工体验。
让我们看看劳动力日常生活中的典型工作日,以便我们清楚地看到AI的一些十分常见的实际用途。
清晨在家
许多智能家居设备具有了解您的行为模式并且帮助您节省资金的能力。像Nest恒温器有助于增加日常便利性并节省能源。
Amazon Alexa,Siri,Google Now和Cortana都是各种平台上的智能数字私人助理。 “今天的交通情况如何?”,“我的日程安排是什么?”,“提醒我在十点钟给X先生打电话”,这些助理的反应非常迅速。
在去办公室的路上
我们可能已经看到有人在驾车上班时阅读报纸(尽管目前风险很大)。但是自动驾驶汽车正在变得越来越有效率; Google的“WA YMO“和特斯拉的“Autopilot”就是两个很好的例子。
在赶着进入办公室时,没有时间找到你选择的新音乐? Spotify使用深度学习来创建最终的个性化播放列表,并根据用户的预先聆听行为提供新的音乐。
下午在办公室
海明威(Hemingway)应用程序使用简单的人工智能,通过自然语言处理来识别书写问题,并打磨您的书写结构。它有助于节省时间并提高可读性。
现在我们不需要因为那些有语言障碍的会议感到困扰了。目前,Skype的翻译器使用8种语言,文本翻译人员可以使用超过50种语言进行即时消息传递。
在电话会议上记笔记有时很困难。Clarke.ai 是一个人工智能机器人,可拨入您的电话会议并完成整个笔记为您工作。然后,当通话结束时,它会直接将电子邮件发送到您的收件箱。
我们通常会在我们的收件箱中堆放一堆电子邮件,即使不包括垃圾邮件。Google的智能回复功能使用机器学习功能来分析您的电子邮件,并给出您可能想要发送的快速,简短的回复的建议。
离开办公室的时间
为你的团队找到合适的人选并非易事。Paradox使用Olivia作为AI助理,让你专注于整个候选人管理。 VCV是一个负责招聘的人工智能机器人 ,它可以搜索候选人,给他们打电话并利用语音识别功能询问问题,然后邀请他们录制视频面试。Glider是另一个类似的例子,它会将你的招聘放在AUTO-PILOT上。
需要为你的直接报告人推荐课程,但无法腾出时间? SAP SuccessFactors,Comertone和许多其他公司已经提供类似的功能,以推荐基于个人职业生涯跟踪和绩效的课程。
在回家的路上
忘了安排明天的会议? AI公司x.ai推出了“Amy”,这是一个虚拟个人助理,可以自动执行安排会议的过程。
想在到达你家之前买东西但不记得了吗? Capitan是您在使用时自动学习的智能购物清单,为您节省时间并避免错过的物品。
晚上在家
一旦你到家,需要放松。Netflix根据您表达的兴趣和您过去做出的判断推荐电视剧和电影。
不需要花费时间来搜寻为周末或假期购买的东西,毕竟你已经非常疲劳了。亚马逊的预期航运项目希望在您需要某些物品之前就向您送来它们。
The North Face是IBM Watson平台,以更具吸引力,个性化和相关购物体验的方式为你寻找一件最完美的夹克。
这些只是几个例子。无论您是否意识到,AI已经对我们的日常(工作)生活产生巨大影响。对于我们大多数人来说,人工智能技术正在帮助我们更有效地完成工作,并且通常使我们的生活和工作更加轻松。
因此,AI在改变人力资源和劳动力方面发挥着重要作用;减少人为偏见,提高候选人评估效率,改善与员工的关系,改进可塑性,提高度量标准的采用率以及改善工作场所学习都是组织今天正在经历的一些好处。
珍妮·梅斯特(Jeanne Meister)在她的文章“工作的未来:人工智能和人力资源的交叉点”中指出,HR领导者如何开始尝试人工智能的各个方面,为他们的组织提供价值。据她介绍,HR领导者正在开始试点人工智能,通过使用聊天机器人进行招聘,员工服务,员工发展和辅导,为组织提供更大的价值。
到目前为止,招聘和人才挖掘是AI解决方案中最有效的领域。越来越多的把HR作为目标的创业公司和服务提供商将基于AI的解决方案用于以下活动:
采购(例如Textio);
面试(myInterview);
入场(Talla);
教练(Saberr)和;
员工服务中心(ServiceNow)。
“目前,这些针对HR和劳动力的基于人工智能的解决方案更像是由数据驱动的分析产品,并且由下一代People Analytics提供支持。”
谈到HR领域的AI时,根据Bersin的说法,“人工智能的应用基本上都是分析应用,软件使用的历史、算法和数据会随着时间变得越来越智能。”人们分析的最有趣部分是人工智能和人工熟练程度之间的接口。
AI投资呈指数增长。研究公司IDC预测,人工智能市场将从2017年的125亿美元增长到2020年的460亿美元,会影响几乎所有行业的所有业务实践。
麦肯锡研究院在其2017年1月的报告“未来如何工作:自动化,就业和生产力”中提到,先进的机器人技术和人工智能等自动化技术是促进生产力和经济增长的强大动力,有助于创造经济盈余,增加整体社会繁荣。
根据麦肯锡的说法,自动化可以使全球经济的生产力每年提高0.8到1.4个百分点;假定被自动化取代的人力工作重新加入劳动力队伍的话。
另一方面,他们的自动化分析发现各个经济部门以及这些部门的职业之间存在显著差异。考虑到影响自动化速度和程度的技术,经济和社会因素,麦肯锡估计,目前的工作活动中高达30%可能会在2030年前取代。
“麦肯锡估计,到2030年,目前的工作活动中高达30%可能会被取代”
当人工智能及其对就业和经济的影响的话题出现时,谈话的主要焦点曾经是蓝领工作。根据CB Insights和State of Automation Report,仅在美国就有4600万零售销售人员因AI而面临失业风险。同样的事情发生在430万厨师和服务员,380万清洁工,2.4M搬运工和仓库工人,180万卡车司机和120万建筑工人。
根据CB Insights的观点,越来越多的AI注入式专家自动化和增强软件(EAAS)平台将引领我们迈向AI辅助和/或AI增强生产力的新时代。这些EAAS平台使用机器智能来复制和增强人类的理解和认识。
这种AI增强的生产力也开始威胁白领工作,比如影响到律师,人力资源,教师,销售,市场营销,研究人员,会计师,软件开发人员等大多数常见职业。
“AI和自动化是否会夺走我们的工作?这个问题在过去曾多次被提出,只要我们能够为自己的未来而努力,答案就是'不'。然而,我们可以期望我们的工作有结构性转变。”
历史和转变
现在许多使用的AI和机器学习的算法已经存在数十年了。近半个世纪以来,先进的机器人,自动驾驶汽车和无人驾驶飞行器(UAVs)已被国防机构使用。
技术一直引发人们对大规模失业的担忧。自称解决主义者,promethean兼设计师Louis Anslow在他的出版书籍“Robots have been about to take all the jobs for more than 200 years”中解释了这一反应。在20世纪30年代,他被称为经济学家约翰梅纳德凯恩斯(John Maynard Keynes),将技术作为大萧条失业的一个原因。因此,这一直是一个热门话题。
BBC Capital最近发表了对未来工作毫无根据的担忧的历史,并在其中指出,早在1959年,数学家I.J. Good的预测到,“科学技术的所有问题都将交给机器,人们不再需要工作”。
麦肯锡研究所最近发表的另一篇文章“工作的未来会对就业,技能和工资意味着什么”表明,这种技能转移或就业流离失所现象并不新鲜。
左图标题:1850到2015年间,美国各行业部门的员工总数份额
右表标题:1850到2015年间,就业的改变
第一次工业革命始于18世纪的英格兰,欧洲,美国和其他国家的经济自那以后经历了两次剧烈的结构变革。机械化推动了农业和工业的革命,鼓励工人从农村迁移到城市。过去60年来发生了第二次结构性转变,一些国家制造业的就业份额下降,而服务业的就业份额开始增长。
根据麦肯锡的研究,伴随这一结构转型过程的就业转移十分剧烈。在整个行业中大量劳动力转移的情况下,整体就业人数占总人口的比例普遍持续增长。
像美国,中国,印度,德国,日本和巴西这样的全球经济体将比印度尼西亚,韩国,土耳其等新兴经济体受到的影响更大。人工智能和自动化的影响依赖于国家的收入水平,人口和产业结构。
期望与现实
那么,人工智能和自动化将使我们的工作自动化吗?
“到目前为止,人工智能和机器人不是用来”自动工作“,而是用来”自动化任务“和”增强“人类功能,从而提高生产力和性能。”
我们大多数日常工作都与文书工作,日程安排,时间表,会计,费用等任务相关(平均百分比如下所示)。 当然,将这些重复的任务外包给数字助理或自动化软件是非常有用的,从而腾出更多的时间进行深入的思考和创造。
当谈到如何利用当前市场上可用的人工智能认知技术,迄今为止他们的主要影响是扩大现有的工作职能,而不是消除工人。能够推理,学习并与人自然互动的机器或系统可能会继续消除重复性任务,帮助员工更好,更快地完成工作,腾出时间完成更有趣的任务。
对于大多数劳动力来说,认知技术可能使他们能够进入新的、更有价值的角色。 因此,大多数组织及其员工可能会从基于AI的技术和自动化中体验到积极的影响。
人类未来研究所(FHI)、耶鲁大学、牛津大学和政治科学部门(Department of Political Science)实际上揭示了一个问题——人工智能会超越人类的表现吗?
根据他们的研究,机器超越人类的时间将会非常长。如果所有任务都是成本效益更高的机器,那么AI将会产生深远的社会影响。
他们的调查采用了以下定义:“高级机器智能”(HLMI)是在无人帮助的机器能够比人类工作者更好,成本更低地完成每项任务的情况下实现的。
例如时间线显示实现所选AI里程碑的概率为50%。具体而言,时间间隔表示从25%到75%的事件发生概率的日期范围。
应用和战略
从所有这些分析中可以清楚地看到,在可预测的环境中(包括生产工人,建筑和地面清洁工)涉及(很多)体力工作的职业以及办公室辅助人员(如文员和行政助理)可能会因人工智能和自动化而开展的活动面临重大影响。另一方面,医生和专业人士,比如工程师和商业专家则不太可能经历太多的影响。
目前的职业教育需求水平往往与这些活动自动化的可能性呈正相关。比起那些只需要高中文凭和一些经验的职业,需要高等教育的职业通常包含了自动化更少的工作内容。
“受自动化影响的工作人员很容易被识别出来,而由技术间接创造的新工作和技能组合的转变在各个行业和地区都不太明显,并且分布广泛。”
世界经济论坛“就业的未来”报告着眼于未来的就业,技能和劳动力战略。报告的作者向全球领先企业的首席HR主管和战略主管询问了目前的转变意味着什么,特别是针对跨行业和地域的就业,技能和招聘。
他们发现AI和自动化的最新发展将改变我们的生活方式和工作方式。一些工作会消失,另一些工作会增长,而今天根本不存在的工作将会变得司空见惯。可以肯定的是,未来的劳动力队伍需要调整其技能以跟上节奏。
未来技能
复杂的问题解决
批判性思维
创造力
人员管理
情绪智力
建立关系
谈判
认知灵活性
有风险的技能
记录和报告
行政的
体力劳动
可预测的分析
质量控制
校准
驾驶或骑马
信息收集
根据未来工作与消费研究员Laetitia Vitaud的观点,我们现代企业的大部分人力资源部门都已经成为把人当作资产一样管理、按照流程驱动的“机器”,而不需要关注个性化、独特的人。
相反,HR部门运行自上而下的流程设计'系统' - 招募大量人力资源,处理工资,组织年度评估,同时批量对员工进行培训等等 - 为员工的个性化,灵活性以及创造力留下少许空间。
Laetitia在她的出版物“AI能否将‘人’投入到人力资源?”中解释说,许多HR专业人员不了解的是,AI如何提供独特的机会来重新定义人力资源,并提升其相关性。
简而言之
因此,人力资源部门的关键是开发人工智能和自动化战略,首先要分析AI将会重新定义哪些工作角色,流程和工作流程。 Jeanne Meister在最近的文章“AI +人类智能是工作的未来”中指出,人们可以开始思考人工智能和自动化对工作任务,关键工作角色和工作流程的影响。你可以简单地开始问:
自动化:该角色中的哪些关键活动可以自动化以提供更高的效率和有效性来完成日常任务?
扩张:如何通过应用人员分析来确定新的业务洞察力以创建更好的战略规划和行动,从而创造更多价值?
放大:AI技术可以重新设计哪些工作过程和流程来促进人类活动和决策制定?
下图显示了HR和劳动力需要的AI战略所需的关键因素。基于这些基本原理和重要因素,我们便可以为企业及其(未来)人才创造价值主张。
AI战略中基本、重要的要素
基本原则
领先的正确思维
清晰的视野和商业案例
使用正确的管理方式
使用创新模式的COE
要素
领导力和整体方向
人才与变革管理
道德,合规和公正
扩展主动性和策略
技术不仅是创造最佳员工体验的关键推动力。有了正确的准备,HR部门的领导可以利用这些概念提供创新的文化。以最有效的方式实现数字化和自动化肯定会提高组织的人员绩效。
未来掌握在我们自己的手中,我们应该通过接受我们的未来是人类与机器之间的合作这一事实,来规划并实施必要的策略,为我们自己的美好未来做好准备。
People Analytics
2018年05月04日
People Analytics
区块链技术将对人力资源产生重大影响!
区块链技术有望改变传统的人力资源实践。
这项技术最简单的解释是它提供了一种安全的方式来实时查看数据。数据区块链技术记录很难改变。
该技术于2009年由中本聪(Satoshi Nakamoto)推广使用,并以此为基础创建了加密货币比特币。该技术的革命性应用促进了网络安全和在线金融交易的进步。
使用安全区块链技术提供的人力资源效率可以提高。普华永道发布的报告解释了区块链技术如何在人力资源中使用。本文介绍了本报告的重点以及该主题的一般视角。
中介(后台功能)将被淘汰
普华永道将后台功能定义为交易的中介功能。这些职能包括核对,提供收据和提供采购订单。去除这些中间商为企业提供了两大好处。
首先,完成交易和其他管理任务所花费的时间大大减少。缩短交易时间可为员工花更多时间花在其他重要业务职能上。人力资源团队可以计划更多的培训课程来提高员工的技能。员工还可以参加更多的会议和外部培训机会以保持最新状态。
其次,它减少了业务开支。人们会认为,取消中介职能会导致失去无数的工作。公司通过合并这些职能并培训这些员工在企业风险管理和财务分析中发挥作用,从而避免了大量的失业。这两个功能对于商业成功至关重要。
招聘流程将更加有效
招聘经理将能够访问潜在员工的数据库。这个数据库将包含这些人的教育,技能,培训和工作场所表现的全面,可靠的记录。这种有用的信息被称为“价值护照”,增加了招聘经理找到合适职位的能力。这也增加了潜在员工展示其最佳技能的能力。
生产力将增加
人们认为更好地匹配人员职位可以提高生产力。这对中小企业(SME)特别有用。这些公司规模较小,往往使招聘人员难以找到最适合的职位。区块链技术通常会帮助人们在最适合他们技能的角色中工作。
跨境支付将变得更加容易
跨州和跨境国家可以使用区块链技术来创建自己的货币。这些货币可以使公司间交易和供应商交易更容易进行。他们使用的系统最终将允许创建的货币转换为实际货币。
跨境验证过程也将变得更加高效。随着智能合约的实施,多重签名系统将成为过去。智能合同允许协议立即得到验证,无需调解员。积分是使用区块链技术构建的智能合同解决方案的一个例子。
此外,有些“全球货币”会让各个国家更容易遵守税法。这些应用需要进一步研究,但值得一提。
欺诈的可能性大大减少
人力资源部门为员工处理大量个人数据。针对这些数据的不安全数字存储系统对于导致身份盗用和欺诈的网络攻击开放。中小企业尤其如此。Blockchain的网络安全应用程序可以缓解这些挑战。它还限制员工访问数据,从而防止内部欺诈的可能性。
每年都会推出提高工作效率的新方法。区块链是最新的数字解决方案之一,可以极大地改善人力资源功能。研究是持续的,但本文提到的一些应用很可能很快成为主流。随时了解最新的更新,以便您可以将其应用于您的组织。
以上由HRTech AI翻译完成,仅供参考。
Blockchain technology is poised to change traditional HR practices.
The simplest explanation of this technology is that it provides a secure way to view data in real-time. Data blockchain technology records is difficult to change.
The technology was popularized in 2009 by Satoshi Nakamoto which used it as the foundation for creating the cryptocurrency, Bitcoin. This revolutionary application of the technology facilitated advances in cybersecurity and online financial transactions.
HR efficiency can be improved using the security blockchain technology provides. A report published by PwC explains how blockchain technology can be used in HR. Highlights from this report, as well as general perspectives on the topic, are presented in this article.
Back-Office Functions Will be Eliminated
PwC defines back-office functions as the intermediary functions of a transaction. Such functions include reconciliation, providing a receipt, and providing a purchase order. Removing these intermediaries provides 2 main benefits to businesses.
Firstly, the time taken to complete transactions, and other administrative tasks, is greatly reduced. Reduced transaction time creates more time for employees to spend on other important business functions. The HR team can plan more training sessions to improve employees’ skills. Employees can also attend more conferences and external training opportunities to keep them current.
Secondly, it reduces business expenses. One would think that removing the intermediary functions would result in the loss of countless jobs. Companies are avoiding massive job losses by merging these functions and training these employees to take on roles in enterprise risk management and financial analytics. Both functions are crucial for business success.
Hiring Processes Will Be More Effective
Hiring managers will be able to access a database of potential employees. This database will contain a comprehensive, trustworthy records of these person’s education, skills, training and workplace performance. Dubbed the “value passport”, this useful information increases a hiring manager’s ability to find the right talent for positions. It also increases the potential employee’s ability to showcase their best skills.
Productivity Will Increase
It is felt that better matching people with positions will improve productivity. This will be particularly helpful for small and medium-sized enterprises (SMEs). The small size of these companies often makes it difficult for recruiters to find the best matches for positions. Blockchain technology will generally help people work in roles best suited for their skills.
Cross-Border Payments Will Become Easier
Cross-state and cross-border countries can use block chain technology to create their own currencies. These currencies can make it easier for inter-company and supplier transactions to be performed. The system they use would ultimately allow for the created currency to be converted into real currency.
Verification process across borders will also become more efficient. Multi-signature systems will become a thing of the past with the implementation of smart contracts. Smart contracts allow agreements to instantly be validated without the need of a mediator. Credits is an example of a smart contract solution built using blockchain technology.
Additionally, a somewhat “global currency” will make it easier to remain compliant with tax laws for various countries. Such applications require further research, but they’re worth mentioning.
The Likelihood of Fraud is Greatly Reduced
HR handles a wealth of personal data for employees. Unsecure digital storage systems for this data are open for cyber attacks that lead to identity theft and fraud. This is particularly true for SMEs. Blockchain’s cyber security application mitigates against these challenges. It also limits employees’ access to data thereby preventing the likelihood of internal fraud.
New approaches to improve workplace efficiency are introduced each year. Blockchain is one of the most recent digital solutions that can greatly improve HR functions. Research is continuous, but it’s highly likely that some of the applications mentioned in this article will soon become mainstream. Keep abreast with the latest updates so that you can apply them in your organization.
People Analytics
2018年04月07日
People Analytics
Slack正在开发一些工具来判断某人是否有麻烦 Slack CEO Stewart Butterfield is fascinated by “people analytics.”
在二十世纪九十年代初期,新成立的互联网传播者承诺无性别的乌托邦。他们认为,像种族和阶级这样的分层标识符会在网上被遮蔽,因此有偏见的判断将因此变得过时。这并没有完全奏效。
性别规范今天渗透到数字通信当中,如同他们面对面一样强有力地(并且对女性有害),显示出数十年的语言分析。正如 研究数字通信动态的领先语言学家Susan Herring 所说的,无论是在列表服务,短信,Facebook还是Reddit中,男性都倾向于“数字化传播” 。与此同时,女性在私人空间中自我隔离,像直接消息一样仅限女性空间。
日益流行的工作场所沟通平台Slack不免于这种现象。正如我在“ 你的公司的Slack可能是性别歧视 ” 一文中所写的那样,各行各业的女性都表示,他们的男性同事用他们在会议中部署的同样权威的沟通风格来主导公共频道的对话。与此同时,女性更倾向于使用支持性的友好标点符号,并用对冲方式修改他们的观点,如“我可能是错的,但是......”
现在,Slack首席执行官斯图尔特巴特菲尔德说,斯莱克是领先的产品,将提供单独的斯莱克用户的数据,他们的数字通信是否改变时,他们与不同人口的人说话。他表示,这些数据将有助于促进更加平等和包容的工作场所文化,并使员工更有效率和效率。
在Slack上偏置
随着Slack继续取代电子邮件,成为全球5万多家公司内部沟通的主要手段,女性对平台的抑制对组织文化,创新和商业成功构成了巨大威胁。
当然,性别或其他等级的传播规范并不普遍; 有些女人很自然地说话,特别是其他女人也一样。有些男人自我质疑,以至于瘫痪。Slack(作为一个公司或产品)也不应该归咎于性别规范的流行,我们在我们打字之前就开始内化 - 甚至可以用完整的句子说话。但是,尽管Slack认为其产品的任何部分都不利于偏见,但公司现在似乎承认,女性和代表性不足的少数群体的人 可能会在Slack上保持沉默 - 并且正在研究解决这些趋势的产品开发。
2017年11月,Slack告诉Quartz,关于该平台促进性别偏见的抱怨没有出现。“如果我们看到一种趋势,那就是女性说他们在Slack上没有发言权,我们会努力解决这个问题,”Slack通讯主管Julia Blystone说。“但我们在研究中没有听说过。”
短短几个月后,CEO巴特菲尔德管家指出,斯莱克是 着手解决的担忧,通过开发工具来分析其平台上通信的发展趋势,在沃顿人们分析会议 3月23日在费城响应来自沃顿商学院管理学教授一个问题Mae McDonnell谈到Butterfield是否担心私人Slack聊天“渠道”会加剧排斥,CEO也开玩笑说,“我担心所有事情。我有一个犹太人的祖母。“
“如果组织内部存在深层和系统性问题,Slack可能夸大他们,”他说。
巴特菲尔德补充说,该平台还可以增强组织的积极特征。“如果组织内部有真正的积极属性和成功的[谈判和对话]技能,那么这些技能可以超负荷,”他说。“所以我认为[Slack]的结构没有任何内在的东西......或者任何固有的可见特征都会抑制多样性。”
巴特菲尔德强调,对于所有身份不太熟练的雇员来说,斯莱克可能是天赐之物。巴斯菲尔德说,几乎每个星期,斯拉克都会听到那些内向的或者以前很难参加“某些参与者声音更大,或者更具侵略性”的会议的客户,或者只是想更慢地思考。“他们伸手要说声谢谢,因为现在有了Slack,他们可以异步参与,他们觉得他们有更多的投入,并且他们的公司对话中的参与者要多得多。”
“个人分析”可能会暴露沟通偏见
虽然面对面沟通中的性别歧视或种族歧视可能会被感知和记忆扭曲,但Slack的数字档案为语言分析提供了宝贵的机会。
巴特菲尔德说,他对个人分析的想法非常感兴趣。
“这些分析是除了你之外没有其他人能够接触到你,”他说。“他们没有以任何方式向你展示任何真正的道德价值,但[他们回答诸如此类的问题],你跟男人说话的方式不同于与女人谈话?你是否以支持小组的方式发言,而不是与上级谈话?你在公共场合讲话的方式不同于你私下说话吗?
巴特菲尔德的纽约员工正在创建这些分析工具来识别这些个人通信风格,他说。“Slack员工使用一些API来完成自己的查询,”他说。“ 我们未来几年的计划是尽可能地扩大这一计划 - 以便为客户提供有关其组织和个人的见解。”
布莱斯通表示,个人分析计划“处于早期阶段,并将在未来几年继续发展。”
作为首席执行官,Butterfield表示他有兴趣在更宏观的层面上使用Slack通信分析来识别功能失常的团队或其组织内不匹配的合作关系。Slack已经公开承诺在自己的职位中实现多元化,2016年已经将女性管理人员的比例从43%提高到48%。尽管如此,有色人种 仍然缺乏代表性, 只有5%的Slack科技职位的雇员是黑人,这在科技公司中普遍存在。
分析和监视之间的细微线路
在这些产品的早期,它们将数据放在逐个人基础上损害(和积极)通信动态的潜力是前所未有的。
女性和代表性不足的少数民族的人有时不会说出Slack习惯使他们感到不舒服的同事,因为担心他们不会相信,或者没有数据支持他们的指责。令人信服的是,对于性别交流模式的语言学研究可能是有代表性的,但与容易获取的有关人们坐在一起的实时数据(或偷懒)相比,这些国家代表性的样本显得苍白无力。
当然,与人们分析相关的隐私仍然很紧迫。这是Slack尚未解决的问题。
巴特菲尔德说:“我们在这些关于信息访问的谈话中处于中间位置,因为我们大部分大型企业客户都有员工条款,这些条款已经授予他们访问所有员工沟通的权利。
自动分析用户如何沟通将是更进一步的一步。 巴特菲尔德后来说:“这是一个 充满挑战的领域,因为你希望通过他们得到的反馈和他们使用的工具来赋予人们权力,而没有他们感觉他们正在被监督。
“ 这对任何员工都是有用的反馈,但这可能是人们与他们的经理或同事分享不太舒服的东西,所以同意问题真的很有趣。”
然而,即使不公平的数据要暴露个人,它也可以 - 并且在巴特菲尔德的书中 应该激发积极的变化。“因此,如果[数据]的结果不是'嗨,结果你是个混蛋,我们正在解雇你',但'嘿,事实证明我们已经确定了一些围绕沟通的问题,或者管理结构或组织设计,这阻碍了我们想要取得的进展,因此我们要纠正它们,“这是件好事,”他说。
以上由AI翻译完成,仅供参考。
In the early 1990s, newly minted Internet evangelists promised a gender-free utopia. Hierarchical identifiers like race and class would be obscured online, they argued, and biased judgements would therefore become obsolete. That didn’t quite work out.
Gender norms infiltrate digital communication today as powerfully (and as detrimentally to women) as they do in-person, show decades of linguistic analysis. Whether on listservs, text messages, Facebook, or Reddit, men tend to “digitally manspread,” as Susan Herring, a leading linguist studying digital communication dynamics, calls it. Meanwhile, women self-segregate in private, women’s-only spaces, like direct messages.
Slack, the increasingly popular workplace communication platform, is not exempt from this phenomenon. As I wrote in “Your company’s Slack is probably sexist,” women across industries say that their male colleagues dominate public-channel conversations with the same authoritative communication styles they deploy in meetings. Meanwhile, women are more likely to use supportive, friendly punctuation, and to modify their opinions with hedges like “I could be wrong, but…”
Now, Slack CEO Stewart Butterfield says Slack is pioneering products that will provide individual Slack users with data on whether their digital communication changes when they speak with people of different demographics. He says this data will help promote more equal, inclusive workplace cultures, and make employees more efficient and effective.
Bias on Slack
As Slack continues to replace email, becoming the primary means of internal communication at over 50,000 companies worldwide, women’s inhibitions on the platform pose a formidable threat to organizational culture, innovation, and business success.
Of course, gendered or otherwise hierarchical communication norms aren’t universal; some women are comfortable speaking bluntly, especially when other women do the same. And some men self-question to the point of Slack paralysis. Nor is Slack (as a company or product) to blame for the prevalence of gender norms that we start internalizing before we can type—or even speak in full sentences. But while Slack holds that no part of its product facilitates bias, the company now appears to acknowledging that women and people of underrepresented minorities could be silenced on Slack—and looking into product development that addresses these trends.
In November 2017, Slack told Quartz that complaints about the platform’s facilitation of gender bias hadn’t come up. “If we had seen a trend where women said they didn’t have a voice on Slack, we would work on how we might address it,” said Julia Blystone, head of communications at Slack. “But we haven’t heard that in our research.”
Just a few months later, CEO Steward Butterfield indicated that Slack was beginning to address concerns, by developing tools to analyze communication trends on its platform, at the Wharton People Analytics Conference in Philadelphia on March 23. In response to a question from Wharton management professor Mae McDonnell on whether Butterfield ever worries that private Slack chat “channels” can reinforce exclusion, CEO also joked, “I worry about everything. I have a Jewish grandmother.”
“If there are deep and systemic problems at an organization Slack can exaggerate them,” he said.
Butterfield added that the platform can also enhance an organization’s positive characteristics. “If there are real positive attributes and successful [negotiating and conversational] skills within an organization, those can be supercharged,” he said. “So I don’t think there’s anything inherent to [Slack’s] structure… or any inherent visible characteristics that would inhibit diversity.”
Butterfield emphasized that for less loquacious employees of all identities, Slack can be a godsend. Nearly every week, Slack hears from customers who identify as introverted, or previously struggled to participate in meetings “where some of the participants are louder, or more aggressive,” or just prefer to think more slowly, says Butterfield. “They reach out to say thank you, because now with Slack, they can participate asynchronously, and they feel like they have much more input, and are much more active participants in their company’s conversations.”
“Personal analytics” could expose communication bias
While apparently gendered or racial slights in face-to-face communication can be distorted by perception and memory, Slack’s digital archives provide invaluable opportunity for linguistic analyses.
Butterfield says he’s “really interested in the idea of personal analytics.”
“These are analytics that no one else has access to you except for you,” he said. “And they don’t present you with any real moral value either way, but [they answer questions like], do you talk to men differently than you talk to women? Do you speak to support groups differently than you speak to superiors? Do you speak in public differently than you speak in private?
Butterfield’s New York staff are creating those analytics tools to identify those personal communication styles, he says. “There’s a handful of APIs Slack employees use to do their own queries,” he said. “Our plan for the next couple of years is to expand that as much as possible—so to provide customers with insights about their organizations and individuals.”
Blystone says the personal analytics initiatives are “in the early stages and will continue to develop over the next couple of years.”
As CEO, Butterfield says he’s interested in using Slack communication analytics at a more macro-level to identify dysfunctional teams or mismatched partnerships within his organization. Slack has publicly committed to diversity within its own ranks, and 2016, has raised representation of women in management from 43% to 48%. Nevertheless, people of color remain vastly under-represented, only 5% of employees in tech roles at Slack are black, a disproportion common in tech companies.
The fine line between analysis and surveillance
Early as these products may be, their potential to put data behind damaging (and positive) communication dynamics on a person-by-person basis is unprecedented.
Women and people of underrepresented minorities sometimes don’t speak up about coworkers whose Slack habits make them uncomfortable due to fear that they wouldn’t be believed, or wouldn’t have data to back up their accusations. Convincing as linguistic studies on gendered communication patterns may be, nationally representative samples pale in comparison to easily accessible, real-time data about the people literally sitting (or Slacking) alongside you.
Of course, privacy as it relates to people analytics remains pressing. It’s an issue Slack has yet to resolve.
“We’re a bit stuck in the middle on these conversations about access to information, because most of our large corporate customers have employee provisions which already grant them the right to access all employee communications,” said Butterfield.
Automatic analysis of how users communicate would be a further step. “It’s a fraught area, because you want people to be empowered by the feedback they’re getting and the tools they’re using, without them feeling like they’re being surveilled,” said Butterfield later.
“That would be useful feedback for any employee, but it’s probably something that people don’t feel very comfortable sharing with their managers or with their peers, so the consent question is really interesting.”
However, even if unfavorable data were to to be exposed about an individual, it can—and, in Butterfield’s books, should—inspire positive change. “So if the result of that [data] is not ‘Hey, it turns out you’re a jerk and we’re firing you,’ but ‘Hey, it turns out we’ve identified some set of problems around communication, or management structure or organizational design, which inhibits the kind of progress we want to make, and therefore we’re going to rectify them,’ that’s a good thing,” he said.
This story is part of How We’ll Win, a project exploring the fight for gender equality at work. Read more stories here.