• AI
    用神经科学和AI帮你找工作,Pymetrics获得800万美元融资 有人靠心理测试找工作,有人用星座找公司,现在有人开始用神经科学帮你找工作了。 美国公司Pymetrics利用人工智能和神经科学小游戏来帮用户匹配最合适的工作。这家公司宣布完成了800万美元融资,Jazz Venture Partners领投,新进投资者Workday Ventures和原有投资者Khosla Ventures、 Randstad Innovation Fund和BBG Ventures参投。这笔资金将用于人才招募,公司目前有45名员工,分别在纽约、旧金山、伦敦和新加坡。 Pymetrics 成立于2013年,迄今为止已经融了超过1700万美元。 这家公司总部位于纽约,跟一般人用学历和院校来评价求职者不同,他们用认知和情感方面的元素来评价应聘者,具体方式是让他们玩一套神经科学小游戏。用户需要完成包括虚拟金钱交易、键盘点击等至少12个游戏,才能收到完整的职业评估。 接下来,Pymetric的人工智能系统会分析应聘者的结果,将其与公司中表现最好的员工比较。 Pymetrics 的联合创始人兼CEO Frida Polli对VentureBeat 解释:“我们会收集各行各业专业人士的密集行为数据,利用深度学习建模,分析究竟是哪些特质,让这些成功人士比一般人优秀。” Pymetrics的服务对求职者免费开放,公司的盈利模式是向B端用户收费。公司会给企业客户提供定制化的算法模型,让他们通过平台挑选出有潜力的人才。该服务按年按服务级别收费。 根据Pymetrics给出的数据,全球目前有50个国家正在使用他们的平台,包括Unilever和埃森哲(Accenture);在求职者这边,则一共有50万名用户。 According to Pymetrics, more than 50 companies around the world currently use the platform, including Unilever and Accenture. On the job seeker side, there are more than 500,000 users. VentureBeat担心,有些算法模型会不会带有人类的偏见,或者某些政治不正确的因子。Polli则回应:“我们的算法不会收集任何人口统计学方面的数据,而且我们会选用统计工具剔除任何模型中的偏见。” 公司CEO将心理学加大数据的服务公司CEB-SHL 和 IBM Kenexa等传统平台视作竞品,实际上很多新型创业公司正在将AI技术用户职业匹配,比如Leap.ai、Teamable、Beamery和Mya Systems。 除了这800万投资之外,Pymetrics还从洛克菲勒基金会( The Rockefeller Foundation)获得一笔补助,具体金额未透露。这笔资金将用户帮助未充分就业的年轻人,让他们学以致用。 本文翻译自 venturebeat.com,原文链接。如若转载请注明出处。
    AI
    2017年09月22日
  • AI
    招聘这件大事,硅谷企业正利用AI给出求职者客观评价,辅助HR消除主观偏见 艾格·格雷夫斯基一直想让硅谷变得更加多元化。他于2012年创办了一家叫做Mya Systems的公司,这家公司的总部位于旧金山。格雷夫斯基希望通过这家公司减少人为因素对企业招聘的影响。“我们正尝试剔除招聘过程中的偏见”,他说道。 格雷夫斯基正在和Mya共同实现他的目标。Mya是一个很智能的聊天机器人,可以对求职者进行面试和评估。格雷夫斯基认为,和一些招聘人员不同,经过编程的Mya会向求职者提出客观的、基于工作表现的问题,并避免人类可能产生的潜意识判断。Mya评估求职者的简历时,不会关注他的外表、性别和名字。“我们正极力剥除这些因素”,格雷夫斯基说道。 格雷夫斯基表示,目前已经有几家大型招聘机构正在使用Mya,不过他拒绝透露这些公司的名字。这些招聘机构用Mya来对求职者进行初试。Mya可以根据工作的核心要求对申请者进行筛选,了解他们的教育和专业背景,告知求职者他们所应聘职位的细节,衡量他们是否感兴趣;同时还能回答求职者关于公司政策和文化方面的疑问。 科技产业多元化不足 众所周知,科技产业存在多元化不足的问题,而且纠正这一失衡现象的速度缓慢得令人失望。虽然有公司指出这是“流水线调度问题”,但其实问题的根源出在招聘。招聘是一件非常复杂、繁重的工作,招聘人员需要挑选出最合适的人选,但他们往往存在许多偏见。某种程度而言,招聘系统决定了企业的技术人才构成。假如企业能够摆脱招聘过程中的人为因素重新招聘,会发生些什么呢?很多创业公司正在开发相关的工具和平台,用人工智能技术招聘人才,他们认为这些工具和平台将大幅减少招聘过程中的偏见。 HireVue也是一家尝试用人工智能消除招聘偏见的企业。通过基于智能视频和文本的软件,HireVue可以从视频面试中提取多达25000个数据点,从而判断出最合适的工作人选。英特尔、沃达丰、联合利华和耐克等公司都在使用HireVue的系统。HireVue的评估依据涵盖了面部表情到词汇表达等众多因素,它甚至可以衡量应聘者的同情心等抽象品质。HireVue的首席技术官Loren Larsen表示,通过HireVue“无论应聘者是什么性别、种族、年龄,做过那些工作,读的什么大学,都将获得同样的机会。”因为这款工具为所有应聘者提供了相同的应聘流程,而不是像人类招聘员那样,情绪和环境等因素都会影响到他的判断。 尽管AI招聘工具尚未得到广泛使用,但咨询公司CEB的产品管理总监Aman Alexander认为,它在人力资源中的流行度正在增加。CEB公司为AMD、Comcast、Philips、Thomson Reuters以及沃尔玛等大型企业提供了一系列的人力资源工具。Aman Alexander说道:“需求一直在快速增长。招聘工具最大的用户不是科技公司,而是需要招聘大量员工的大型零售商。这意味着对于企业主而言,它们最大的魅力在于可以提升效率而不是公平性。” 不过,HireVue和Mya等产品背后的团队认为,它们的工具可以让招聘过程更加公平。因为自动化需要设立标准,这意味着使用人工智能助手的企业必须清楚如何对应聘者进行评估。理想情况下,这些参数可以在良性循环中不断更新,AI系统通过分析它收集到的收据,可以让整个过程更加公正没有偏见。 不过值得注意的是,AI的效用是由驱动它的数据决定的,而这些数据又是由凌乱、令人失望且充满偏见的人类产生的。 AI并不能消除偏见 只要你深入挖掘那些旨在促进公平的算法,就会发现它们或多或少都存在偏见。ProPublica检查用于预测再犯率的警用工具时发现,该算法对非裔美国人存在偏见。Beauty.AI是一个利用人脸和年龄识别算法选美的软件,它可以从提交的一系列照片中选出最具吸引力的人物。不过令人遗憾的是,它对浅色皮肤和头发的人表现出了强烈的偏爱。 即便是那些AI系统的创造者也不得不承认,AI并非完全没有偏见。AI招聘平台Talent Sonar的创始人兼CEO劳拉•马瑟(Laura Mather)表示:“在招聘过程中使用AI非但不会减少,反而会增加偏见。”她认为,AI依赖于人类团队所产生的训练集,所以它只会增加偏见而不是消除它。它雇佣的人可能“都很聪明、有天赋,但却彼此十分相似”。 此外,由于AI是为处理大批量招聘而开发的,任何偏见都将对谁将脱颖而出产生系统级的影响。据格雷夫斯基介绍,Mya Systems正在聚焦零售等行业。“CVS Health正在招聘12万人补充到它的各个零售点中,Nike每年招募的人也有8万之多”。任何渗透到系统中的偏见都将产生工业规模的影响。当面对多达12万的规模庞大的申请者时,AI平台可能会让招聘标准迅速偏离人类招聘专员最初的设置的标准。 话又说回来,AI的强大能力也有一定的好处:它解放了招聘人员,让他们可以集中精力做出更加明智的最终决定。“在我的一生中,我和成千上万个招聘人员交谈过,他们每一个人都在抱怨自己的时间不够用”,格雷夫斯基说道。既然没有足够的时间和每一个应聘者交谈,那么直觉决策就变得很重要。AI不仅使得招聘人员可以应对更大规模的应聘者,同时也帮助他们告别了快速决策的工作状态,能够更加从容周全地思考和判断。 要避免AI系统步入“偏见”的陷阱,就要求工程师和程序员具有超知觉。格雷夫斯基解释道,Mya Systems对Mya用来学习的数据种类进行了控制。这意味着Mya的决策是基于Mya Systems及其客户预先批准的数据生成的,而非原始的、未经处理的招聘和语言数据。这减小了Mya像Tay一样学习偏见的可能性。Tay是微软去年发布的聊天机器人,经过循环学习后,它很快变成了一个种族主义者。不过Mya Systems的做法并不能消除偏见,因为任何经过审核的数据都反映了人们的选择倾向和偏好。 正因为如此,AI人力资源工具可能无法消除偏见,反而会将其永久化。ReadySet是一家位于奥克兰的多元化咨询公司,其执行总监Y-Vonne Hutchinson表示:“我们尽量不将AI视为灵丹妙药。AI是一个工具,AI有制造商,有时AI可以放大制造商的偏见和制造商的盲点。Hutchinson 接着说道:“要让这些工具工作,使用它们的招聘人员必须经过训练,要能够发现自己和其他人的偏见。”如果没有这种多元化的训练,人类招聘专员就会把他们的偏见植入到招聘的不同环节。 AI让硅谷变得更好 一些使用AI人力资源工具的公司正在努力增强其多元性。Textio是一个智能文本编辑器,它可以运用大数据和机器学习对职位列表提出修改意见,从而吸引不同类型的人才。Atlassian是Textio的众多客户之一,据Atlassian全球多元化和包容性负责人奥布里·布兰奇表示,Textio帮助公司将新员工中的女性比例从18%提高到了57%。 布兰奇说道:“我们看到,我们筛选和最终雇佣的应聘者在性别分布上有了显著的变化。她表示,使用Textio的意想不到的好处之一是,除了Atlassian的应聘者变得多元化之外,公司对企业文化也有了自我认识。“这引起了很多关于语言如何影响我们作为雇主的品牌形象的内部讨论”。 总而言之,如果AI招聘工具能够提高生产力,那么它就能得到更加广泛的使用。但如果企业想仅仅靠引进AI来让招聘更加公平,这还远远不够。用不断加深的对多元化的认知来完善AI系统十分重要。AI或许无法成为科技行业解决多元化问题的灵丹妙药,它充其量只是硅谷努力变得更好的一种重要工具罢了。 via wired     雷锋网编译 雷锋网(公众号:雷锋网)雷锋网
    AI
    2017年09月20日
  • AI
    没钱请财务顾问?金融科技创企Pefin运用AI提供财务咨询   对于许多人来说,做个人财务决策是必要的环节,也是压力的主要来源。 想要帮助缓解这种混乱的想法让Ramya Joseph辞去了她在高盛自营交易的副总裁职位,并在2011年创办了这家名为Pefin的金融科技公司。Joseph表示,随着竞争和技术不断重塑金融服务行业,“我们正把这个行业里改造成我们理想中的样子。” 在寻求更大回报方面,自动化财务咨询正在变得越来越普遍。尽管如此,Pefin仍然将自己定位为“世界上第一个人工智能财务顾问”。该公司旨在利用机器学习通过聊天界面提供一系列财务规划和投资建议。 Joseph说:“我之所以创办Pefin,是因为那些不那么富裕的人,只能获得来自机器人的财务建议。” 她说:“当人们说想要舒适的退休时,其实摆在他们面前的路很少。要么自己DIY,要么就去咨询财务顾问。但是这些财务顾问的收费是很高的,他们所给出的价格可以筛选掉大多数人。” 拥有哥伦比亚大学计算机科学和金融工程硕士学位的Joseph原本没有意识到这一问题的存在。直到2008年,她的父亲在金融危机中失业了。这场全球金融动荡影响了他的财务未来和退休计划。 Joseph说:“我当时正在高盛工作,为百万富翁们提供财务建议。而我的父亲只是想要退休而已。而那些没有帮助的人,又会怎么做呢?” 她说:“所以公司的核心就是以用户为本。这是一个非常不同的底层模型。” Pefin预计将于今秋推出。虽然机器人顾问是财务管理领域中的大趋势,但是Joseph认为Pefin的AI解决方案是与众不同的。 她说:“机器人所做的是执行一项交易,而我们所做的是管理你的财富。投资是可选项,如果我们认为这是正确的选择,我们会为你提供帮助。” Pefin的AI核心是前馈神经网络。根据Joseph的介绍,该网络会查看消费者的不同答案,然后给出多种解决方案。 Joseph说:“像IBM Watson这样的系统是不会为你量身定制解决方案的。他们给出的都是通用的建议。” 相比之下,Pefin会根据你的三个月支出数据,帮助AI针对特定消费习惯定制财务规划。Pefin还会向客户发送有关财务的教育内容。 Joseph说:“你待在系统里的时间越长,我们学习到的就越多,就能为你提供更好的预测和建议。” 目前,公司的资金主要来自于Joseph本人,还有少数私人投资者以及朋友、家人。 她说:“今年晚些时候我们可能会进行融资,然后决定是否需要风投的资金。这取决于到时的情况。”   【AI星球(微信ID:ai_xingqiu)】9月12日报道(编译:福尔摩望)
    AI
    2017年09月13日
  • AI
    「小爱科技」获500万人民币天使融资,用AI帮人力资源机构提高效率 人力资源机构要想增加利润,有两个思路:一是提高单人能效,二是开源新市场。 这两条路其实是相辅相承的。提高效率很好理解,就是把流程尽可能标准化,用机器替代人力。当单人能效提上去之后,服务成本自然降低,就能够服务此前“不划算”的小B端和C端。 “小爱科技”就是用人工智能帮忙落地这一场景。公司成立于2017年5月份,并在8月获得了500万人民币天使轮融资,由AA资本投资。 第一阶段是协同层面, 人力资源公司与企业之间,此前员工的离职、入职信息都用Excel表记录,然后双方通过邮箱、电话沟通,这方面,小爱在双方之间搭建系统,企业可通过系统下达增减员指令等,降低双方的沟通成本。 人力资源公司公司跟员工之间,此前基本上属于失联状态。员工想要提取公积金都需要找到HR,再由HR派任务给人力资源公司,现在小爱提供了C端产品面向员工,上传资料,就能实现一些基础功能。当劳务外包时,员工其实是隶属于人力资源公司,人力资源公司之前也想在节假日提供员工福利,现在有雇员服务系统,双方之间可以直接系统操作。 人力资源公司不可能一家落地全国所有城市,所以都用“互为代理”的形式铺设,这之间的协同也是Excel表,比较落后复杂,现在通过小爱的系统可以实现委托派单。不过,对没有付费的下游代理,只可以通过系统接上游的订单,并不能享受其他协作功能。 第二阶段是智能化, 首先是硬件端的改进,社保服务分大库和小库,大库代理即员工通过派遣等形式挂靠在代理机构上,而小库代理就是纯跑腿模式,机构拿到企业的UK证书做代办,每缴纳、操作一次,客服都需要切换不同企业的资质、证件。这样一来,后端分别操作加上前端分别沟通,小库代理的成本远高于大库,社保机构往往不愿意服务。 不过随着国家出台一些派遣、劳务法规,大库存在一些合规性问题,小库模式会是未来的趋势。小爱的解决方案是,通过硬件黑盒子,一个黑盒子上可以插100个UK证书,就能实现后台的批量操作。这方面,此前报道的51社保也有自研的硬件盒子。 之后在软件上,小爱还推出了社保机器人,通过人工智能技术,可以代替员工完成简单的增减员、补缴等工作,并给到结果反馈。当然,每个省市的规则是提前录入的。此外,小爱还提供政策机器人,每天抓取各社保局政策,然后再人工决定更新系统规则。 未来,智能化的任务处理还可以应用到招聘领域,尤其是像来自58赶集渠道的人群。 据悉,小爱团队现有20多人,CEO谈华芳曾任职企飞CTO,并在联想负责过多租户系统,此前的经历既有技术背景、也对人力资源行业了解。目前,小爱已推广获客20多家,以服务8000-5万雇员的中型人力资源公司为主。收费上,按照人力资源公司服务的雇员数结算。 不过,人力资源机构目前只有几万家,远不抵企业数,从市场角度来说不够性感。对此,谈华芳认为,人力资源公司服务的企业,也在同时使用小爱,想象空间足够大。在企业端,其实可以把人力资源公司看过小爱的渠道,逻辑有些像路易软件。 整体来说,社保行业的公司可以分两类,一类是提供跑腿服务的,铺人、提高效率就是利润增长的驱动,相对是低毛利的生意,像51社保、金柚、社保通等等。另一类是提供系统,软件可复用,自然相对高毛利,小爱就是这种逻辑,不过产品标准化、智能化的水平就是关键。 来源:36氪,作者:徐宁。转载或内容合作请联系zhuanzai@36kr.com;违规转载法律必究。
    AI
    2017年09月08日
  • AI
    AI+大数据+简历筛选与职业规划,下一站「搜前途」要把简历大数据应用到哪里? 人工智能、大数据技术的行业应用逐步拓展开,而AI+教育也是多家机构作出预判下一个风口。教育本身虽然是一个个性化的问题,而职业规划、专业成长更是个人有个人的路要走,但是不代表个性化的问题背后,不能找到普遍性规律。 搜前途,正是试图利用AI+大数据处理技术,应用到简历筛选、人岗匹配、专业报考、职业规划等教育领域中的。 简历清理技术主要销售给B端类“应届生求职网”“猎聘网”等招聘服务公司,提供技术解决方案,通过简历智能筛选,提高人岗匹配度。而简历形成的大数据,通过脱敏处理,搜前途于上月中推出了自有产品“志愿360”,面向C端学生、职场新人提供职业测评、规划咨询等服务。 搜前途创始人刘勇告诉记者,经过近两年的技术积累和行业应用经验,最早推出的“简历清洗服务”,将用户在多个渠道(如,智联,51job等等)发布的职位及收取的简历快速整合到搜前途。 搜前途对这些简历进行自动解析、标准化处理并通过大数据Spider算法自动计算职位与简历的匹配度,人岗匹配算法精准度已超过80%,相当于中级HR的水准,相比于关键字匹配、语义分析方式,更加准确,匹配效率更高。能够有效分析出每个职位的人的成长路径、转行情况等。 提高了HR的工作绩效。 而简历是每一个人自就读高校、攻读专业开始的完整职业发展路径的集中结构化展示。而依托大量积累的简历数据,搜前途顺次推出简历大数据分析服务:“志愿360”。 目前,高考不再分文理科,根据高中所学学科,间接决定了高考后升学在高校拟修读的专业方向。因此,这就需要在高一就有初步的职业规划。志愿360通过分析上亿+真实简历,透视来自各类高校各类专业上亿毕业生过去5年职业发展情况,通过专业或职业角度进行纵向分析、横向对比,帮助高中生进行生涯规划的产品。 据创始人介绍,志愿360不仅具有生涯规划需要的基础功能(一是基于智能测评分析专业或职业潜力;二是基于分数和户口所在地,结合近年招生计划,推荐意向就读地区的合适学校及专业),更依托海量高校毕业生简历展示的职业发展信息,通过查看任一专业过去5年中毕业的人才的职业发展现状。 如各专业的就业分布、平均薪资、专业对口率,以及各职业的专业分布、职业成长周期、转行率等,从而有效判断该专业毕业生在市场上的受欢迎程度。从而帮助专家、老师、家长、学生在2800余所高等院校(每个学校平均开设60个专业)中能够更有效选择适合自己又受市场欢迎的专业。 至于公司战略定位的问题,搜前途创始人刘勇告诉记者,其实我们可以说是一个基于人工智能技术的人才大数据服务商,招聘只是切入口。搜前途通过一个可以代替人类做简历筛选和匹配的智能机器人,并将它提供给招聘网站或服务商做业务加速来收集(脱敏的)人才大数据。 然后在人才成长各阶段提供大数据服务,比如针对高中生推出生涯规划产品,职业规划产品并帮助职教机构精准招生,毕业大学生精准推荐就业,逐步形成一个人才服务生态圈。当然,这些大数据的分析结果也可以服务于各地政府或企业,促进当地的教育改革、人才扶持、人才培训或招聘等。 目前,在人才大数据方向,搜前途高中生生涯规划产品-志愿360已完成线上和线下渠道的搭建,已通过合作伙伴与全国300个教育培训机构签约,覆盖3000所高中;预计在九月初高中开学之际开始全国推广,已完成一定规模预售。 盈利上,志愿360主要面向高中生、高中生家长提供服务,其中针对专业测评、智能推荐、大数据报告等收费。通过线上购买套餐以及线下渠道商推广VIP卡。而之前的招聘服务,也是目前的营收重点,主要有两方面收入来源: 通过为招聘网站、人力资源SaaS服务商、地方政府提供“精准人岗匹配引擎”合作分成; 为有招聘需求的机构提供精准简历推荐服务,按下载简历收费。 团队创始人刘勇是一位连续创业者,获得清华大学/美国加州大学Santa Cruz分校计算机硕士,专业都是ad-hoc网络路由算法研究。联合创始人兼CTO张志平是原立方网技术总监、北京泰克赛尔软件公司资深技术经理,有着十余年互联网/软件行业经验,资深技术及研发管理背景,擅长机器学习及数据分析,擅长大数据分布式计算。 此前,在2016年,搜前途曾获得来自云研资本的千万元级Pre-A轮融资。目前正筹备新一轮A轮融资。 来源:36氪,作者:瑞瑞恒@Ryan。转载或内容合作请联系zhuanzai@36kr.com;违规转载法律必究。
    AI
    2017年09月06日
  • AI
    为何这名销售业绩特别好?拿了种子轮的GetAccept要利用AI提高销售业绩 销售人员面临的窘境是,见了一个潜在客人,发了一封email跟进这次交易,附上一份感谢函,然后杳无音信。 GetAccept 联合创始人Mathias Thulin 对此再熟悉不过了——看似一定能成的买卖,怎么就黄了呢?他和他的联合创始人Samir Smajic 想通过挖掘数据找出究竟发生了什么。为此,他们做了 GetAccept ,一个电子签名服务,同时能帮助销售代表追踪文件和完成交易。这家创业公司今天宣布他们完成了160万的种子轮融资,资方为Amino Capital 和 Y Combinator,还有其他天使投资人。 GetAccept 是2016年 Y Combinator 孵化出来的项目。 “你跟客户的面谈看起来非常棒,他说,太棒了,我喜欢这个,给我发一份计划书吧。我会跟我们的经理谈,然后下周再跟你联系——然后就没有然后了。这种事情发生了太多次了。” Thulin 说,“他们会告诉你决策流程太长了,参与决策的人很多,不是他能左右的;而且你也不知道他们究竟对这件事情有多么上心。你不知道究竟你把计划书发过去之后发生了什么事。从客户的角度来说,当你跟一个销售人员打交道的时候,实在太容易忽略他发过来的邮件和电话了。”(不禁心疼销售部的同事一秒。) 从内部来说,GetAccept会分析销售人员的行为,看看为什么有的公司、有的人做成了更多的交易,有的更少。系统会查找线索,比如这名销售人员的行为、他的产品demo怎么处理,或者这家公司是怎么处理商务需求的——直接让销售对接需求方,还是先用聊天机器人对接,然后直接转给相关销售代表直接沟通。销售人员还可以在平台上重新定位目标、追踪他们的销售线索,同时培养他们类似的意识。Thulin认为,这些细节的地方可以帮助公司提升销售业绩,但是他们通常都忽略了。 他还喜欢说他们的公司基于人工智能技术,但是用户在表面上不会看到,因为技术作用在后端,利用了非常复杂的卷积神经网络。在后台,他们使用机器学习研究最好的销售人员的行为偏好,还有帮助他们达成买卖的诀窍和怪招。Thlin认为,这不是依靠在像斯坦福这样的顶级高校实验室能做出来的系统,而是需要每一家公司在自己企业内依靠自身经验不断调试和反省自身销售业务,同时凭借这个系统,提高他们运作的效率。 “如果我们发现了可以引爆业绩的关键,我们就可以放开手做了。” Smajic 说,“其实销售人员为什么能谈成一单生意,原因真的是多种多样。如果(潜在客户)没有在24小时之内打开我们发过去的文件,那销售人员就必须赶紧处理这件事。另一种情况是,如果他们将这封邮件转发给了内部的其他人,那意味着这单交易会被推后,因为有新的人参与了进来。”总而言之,在不同的情况下,要用不同的方法,没有通用的套路。 GetAccept依然面临着很多挑战,比如其他电子签名公司DocuSign或者趋势追踪CRM公司like Gong 和 Attach。DocuSign从电子签名切入,希望提升企业的工作流程。Like Gong利用自然语言处理和深度学习技术建立了一套工具,能培训和视情况给销售人员建议和话术。根据Attach官网,它可以让用户了解自己发过去的文件对方收件、阅读、转发等情况,以判断是否感兴趣。 在国内切入这两个市场的创业公司也不少,同样是分别从两个市场切入,比如之前报道过的好签、e签宝、上上签、法大大、1号签、领签、易企签、君子签等,都是做电子签名,并以这个为入口沉淀数据,再做后续衍生业务。至于销售线索追踪和挖掘方面,则有商理事、笨鸟社交、数赢云。 这两个都是非常可观的市场,如此看来,GetAccept目前的特点是做得更全,同时切入,这样会不会导致反而两边都做不好?不过Smajic说,GetAccept这款产品的优势恰恰是,同时把两件事都做了,这能帮助公司出奇制胜,并同时切入两个市场。这些公司已经在各自的市场拥有了一席之地的,究竟GetAccept能不能突围而出,还有待观察。 本文翻译自 techcrunch.com,原文链接。如若转载请注明出处
    AI
    2017年09月05日
  • AI
    利用AI帮助企业提高客户交互度,Kata.ai获TPTF领投350万美元A轮融资 印尼人工智能创企Kata.ai今日宣布完成350万美元A轮融资,台湾跨太平洋科技基金(TPTF)领投。MDI Ventures,Access Ventures和Convergence Ventures跟投。另外,VPG Asia,Red Sails Investment和天使投资人Eddy Chan也参与了投资。作为交易的一部分,TPTF主管Barry Lee将加入Kata.ai董事会。 Kata.ai采用B2B模式,其聊天机器人提供增强现实和自然语言处理技术,能够帮助企业提高客户交互度。该创企由原来的YesBoss于2016年晚些时候转型而来,此轮融资将用于国际扩张,在台湾设立附属公司。 在媒体声明中,Kata.ai表示,他们将于本地科技创企合作,更好地服务市场。目前公司正在和东南亚地区“潜在战略伙伴”对话。为顺利推进扩张计划,Kata.ai还计划投资研发工作,尤其是自然语言处理技术,从而更好地理解其他东南亚国家语言。 此外,Kata.ai还打算上线Bot Studio平台,帮助开发人员用同一套自然语言处理技术打造自己的聊天机器人。Bot Studio测试版目前已对部分合作伙伴开放,2017年10月会正式上线。 YesBoss由Irzan Raditya,Chris Franke,Wahyu Wrehasnaya以及Reynir Fauzan共同创办,2015年6月成立,同年10月获得数额不详的种子轮融资,500 Startups,IMJ Investment Partners及Convergence Ventures投资。 该创企打造了一款短讯服务和移动应用,提供餐厅、机票预订服务。之后,该公司收购了菲律宾同类创企JeyKuya。 【AI星球(微信ID:ai_xingqiu)】8月31日报道 (编译:拿铁小心心)
    AI
    2017年08月31日
  • AI
    用AI为企业匹配适岗员工,Leap.ai获240万美元种子轮融资 Leap.ai可以通过人工智能将求职者和招聘人员进行配对。昨日,这家公司获得了240万美元种子轮融资。本轮融资的投资方包括新东方联合创始人徐小平创立的真格基金、红杉中国以及一些天使投资人。 用户只需要在Leap.ai的网站或iOS应用上注册,建立用户信息,上传一份自我评估,讲述自己的优势、个人价值和职业偏好等。公司就会利用算法把候选人的简介和其它公司的雇用标准进行对比。一旦匹配成功,Leap.ai就会向求职者发送通知提醒他们这次就职机会,并会向用人单位发送求职申请。 “我们不仅仅会把用户的简介发过去,同时会告诉他们为什么这个候选人适合这家公司以及这个职位。”Leap.ai的联合创始人兼首席执政官Richard Liu告诉外媒。 目前这家公司拥有50位企业客户,它主要针对美国那些快速增长的公司。其客户包括Dropbox、Zoom和Uber等,同时几家中国公司(包括滴滴出行、百度和美图)也是它的客户。“不仅是硅谷,全世界的人才争夺都很激烈。我们选择和真格基金合作,徐小平先生对中国年轻一代的影响力就是部分原因。”Liu表示。 另外,Liu和另一位联合创始人Yunkai Zhou也曾在中国学习和工作过。在创立Leap.ai之前,这两人都在谷歌担任过工程高管。Liu表示,Leap.ai会向成功雇佣候选人的公司收取费用,具体金额取决于候选人第一年的工资。 在人才招聘领域里,还有不少公司也开始采用人工智能技术。Teamable就介入了员工的社交网络,以进行更好的人才推荐。Beamery则将客户关系管理和人工智能结合在一起,Mya Systems创造了一种人工智能招聘聊天机器人。 Leap.ai将利用这笔种子轮融资进一步开发它的平台,并进行市场营销。目前公司拥有10名员工。
    AI
    2017年08月23日
  • AI
    完成千万级人民币天使轮投资,法里想借AI解决用户基础法律咨询问题 近日,法里正式公布已于2017年5月完成千万级天使轮融资,由中企港资本领投,溪山天使会、友道资产、曾南山等跟投。创始人潘赫先表示,该轮资金将主要用于公司AI产品的迭代研发及市场营销方面。 法里,成立于2016年,是一个智能法律服务平台。公司通过对法律问题进行标准化处理,利用大数据智能匹配法律专家,并通过人工智能的方式解决基础法律问题,复杂问题再转诊给律师,从而达到为律师筛选优质法律案源的重要目的。据官方表示,公司已于2016年5月获得人人网种子轮融资,2016年11月获得数百万的“种子+轮”融资,投资方为洪泰AA加速基金、加拿大天使投资人。 据潘赫先介绍,前期法里以“离婚案件”为切入点,主要为女性离婚用户解决“财产分割” 和“子女抚养权” 等法律问题。而目前,已从一个领域扩展到七个领域,即包括了婚姻、劳动、借贷、交通等。此外,目前产品的综合付费转化率基本稳定在32%以上,综合问题解决率达98%,覆盖领域的渗透率90%以上。法里的愿景也是希望实现用机器解决95%的基础法律问题,剩余的5%则有律师解决。 事实上,从目前提供AI法律服务的国内外公司来看,主要以涉及法律检索、文件审阅、案件预测、咨询服务四大领域为主,包括为律师提供辅助工具或是直接面向消费者提供产品服务。比如,IBM推出的智能律师ROSS、与用户聊天的律师机器人 “DoNotPay”;国内市场上,法狗狗推出的应用于刑事案件的案情预测系统、定位于人工智能法律咨询机器人的 “法律谷” 、将关联案件分类整理并提供可视化数据服务的 “理脉” 等等。整体来看,这些应用于法律的人工智能仍属于工具的范畴。 而从模式来看,目前典型可以分为2B、2C两个不同发展方向。其中,2B类主要用于辅助律师及法律机构提升工作效率;2C类则主要面向个人用户以帮助解决个人法律疑难问题。相比之下,潘赫先表示,区别于无讼、法律谷从律师的利益出发设计产品,法里的核心的市场定位是选择2C方向消费者端。潘赫先认为,一方面,团队认为只有满足了消费者的利益,才能产生付费行为;一方面,团队拥有多款月流水过千万级PC及移动互联网产品的研发、营销及运营经验,擅长用户运营。 而对于各法律服务平台来说,大数据和人工智能都只是提升效率的工具,核心的还是传统法律行业的生意,还是要解决行业的痛点与难题。对于如何在行业竞争中保持关键的核心竞争优势,潘赫先也给出了自己的看法: 其一是人才,即需要能够深刻理解“互联网+法律+人工智能”的复合人才; 其二是AI引擎,即利用AI算法等核心技术搭建适合能够高效解决法律问题的AI引擎; 其三是行业数据,即掌握真正解决法律问题的行业的数据以及对数据结构化的处理能力。 团队方面,目前公司整体规模达20人。创始人潘赫先,吉林大学的法学双学士,原人人网总经理,有8年互联网产品研发、运营经验, 管理过上百人的团队;法律合伙人王培娜,北京盈科律师事务所天津刑事部执行主任、金牌律师;AI科学家薛博士,加拿大麦克马斯特大学&阿尔伯塔大学双博士后,D-Wave公司高级AI科学家,东北大学特聘教授,机器智能与学习实验室主任;技术合伙人于淼,是原中科北控首席技术专家,有智能客服机器人研发经验。 来源:36氪 ,作者:荔枝,如若转载,请注明出处:http://36kr.com/p/5088795.html
    AI
    2017年08月22日
  • AI
    通过机器人实现纯无纸化办公,AI创企Ripcord获4000万美元B轮融资 Ripcord是一家来自美国加州的机器人数字化初创企业,旨在通过机器人、机器视觉和人工智能技术,来打造真正意义上的无纸化办公空间。 日前,该公司宣布已经顺利完成新一轮4000万美元的B轮融资,由同样来自加州的私募股权公司Icon Ventures领投,Kleiner Perkins和Lux Capital两家风险投资公司以及硅谷银行跟投。其中,有2500万美元以股权融资的形式完成,剩下1500万美元以债务的形式完成。 Ripcord于2015年在加州海沃德成立,它研发的机器能够对各种文件进行扫描、传真和分类,还可以基于SAP、甲骨文和NetSuite等公司现有的数字系统,直接在云空间中实现文件搜索。 具体说来,这些公司需要先把他们的纸质文件放进箱子里打包,分别贴上含有元数据信息的条码标签,寄送给Ripcord。接着,Ripcord就会打开这些文件,利用自家公司的机器一一进行扫描和上传,将纸质文件中的内容转换为可以搜索的PDF格式。 这一轮融资,距离公司完成上一轮A轮融资,还不到半年的时间。今年三月,Ripcord顺利完成了950万美元的A轮融资,投资方包括苹果公司联合创始人史蒂夫·沃兹尼亚克(Steve Wozniak)。要知道,他以个人身份进行投资,是一件极其少见的事情。 根据公司的介绍,接下来会利用新一轮融资来研发全新的机器人产品,与此同时扩大软件平台的规模,提高自己的生产能力。另外,公司还计划在未来一年的时间内,雇用超过100位的新员工,走出加州进军其他新市场。 公司联合创始人兼首席执行官Alex Fielding,早年间是苹果公司的一名工程师。他表示:“最近一段时间,有很多公司找到我们,说是想要借助Ripcord的机器和技术,完成自家制纸文件和档案的数字化。”不仅如此,根据相关机构的估算,全球文件记录管理行业,当下至少能够创造出250亿美元的价值。而作为这一行业的新星,Ripcord自然非常希望在市场上站稳脚跟,做出一番成绩。 Fielding介绍说:“自今年三月成立以来,我们就接到了多家国际知名公司的合作请求。为了满足这些客户的需求,我们已经开始加快机器人的研发速度,与此同时投资人也决定进一步为我们提供资金支持。” 最后,在收费问题上,Ripcord之前就表示每个月每页内容收取0.004美元,其中包括了从运输到分类的所有费用。根据公司的预估,到2018年,它将会以每天5000万的速度完成文件内容的数字化。 【AI星球(微信ID:ai_xingqiu)北京】8月18日报道(编译:田小雪)
    AI
    2017年08月18日