• AI
    这8家中国“准独角兽”企业,谁能在智能服务市场脱颖而出? 来源| 亿欧(推广)   在技术和服务不断变革的今天,AI和商业模式的创新仍是发展的重头戏。这篇文章将简单介绍一下目前国内将商业模式与新科技新理念融合的八家“准独角兽”企业,也许不久之后它们之中就将诞生智能服务市场的巨头企业。   1 “当产品遇上技术,不是为了取代谁,这是历史必然的进步” AI+营销?销售易告诉你 帮你做什么:提供运营效率、助力运营决策,连接企业和客户。 史彦泽是移动CRM厂商-销售易(北京仁科互动网络技术有限公司旗下产品)的创始人兼CEO,拥有近20年中美销售及销售管理经验,创业前曾担任全球最大的管理软件企业SAP中国商业用户部总经理,多次荣获SAP、Dell等跨国公司Top Sales称号。 销售易成立于2011年,是一家连接企业营销管理、销售管理和服务管理的移动CRM云平台。销售易通过“SaaS+PaaS+云”的产品服务,帮助企业以营销获客为核心来实现企业、客户、合作伙伴与产品之间的串联。去年7月,销售易入选了Gartner 2017年CRM魔力象限,于4月2日刚刚对外宣布获得腾讯投资1亿元D+轮融资,在2018年陆续推出营销云、IoT云等新产品。   2  AI+招聘?e成科技有话说 帮你做什么:建立企业人才数据库,过去的简历都有用!AI+招聘,人岗匹配更精准。 周友鸿是e成科技创始人兼CEO,人力资源行业连续创业者,2013年创立e成科技,一直致力于利用AI技术助力HR行业数字化人才决策创新,在5年时间内成长为国内领先的人才决策数字化AI平台,旗下的一站式AI招聘服务SaaS更是脱颖而出,通过对人力资源行业痛点的深刻洞悉,周友鸿带领e成科技全球首创并成功商业化落地AiTS、人才库、精英速递、人脉内推、人才地图等产品。 总体来说,e成基于算法的招聘服务SaaS平台,用机器学习算法、数据挖掘、和NLP(自然语言处理)等技术提升简历与岗位的匹配效率,激活企业及猎头等招聘机构的闲置的简历资源,提高存量简历利用率,形成协同共享效应。最后通过建立的海量个人职场用户画像,企业用户画像,在选人,育人,用人,留人等方向提供数据BI服务,推进企业提高自己的人力资本效率。   3 AI+数据决策?一满乐准备好了 帮你做什么:企业运营数据全方位分析,决策风险早知道。 “一满乐”创立于2015年3月,致力于为企业提供建立在机器学习和深度学习技术基础上的数据分析服务,面向包括用户画像、智能补货、定向推荐、动态定价、风险控制、舆情监控在内的多种应用场景。   创始人兼CEO张彦翔拥有超过6年的Apple工作经验,负责Apple store智能商店项目包括POS、ERP、CRM、WIFI定位、SMART SIGN 预约系统等模块的研发。也是全球范围内最早实践iBeacon技术应用商业化的产品经理。 张彦翔是WhatsApp第30号员工,任职中文模块产品经理,负责WhatsApp与中文相关的市场活动产品研发设计调研上线和后期的维护迭代。参与推动WhatsApp推广到中国香港、台湾、大陆等华语地区,成功获取超过5000万活跃用户。在创立一满乐之前,张彦翔创立过另一个创业项目——Vizoal(一款足球比分推送和社交App),拥有连续创业的经历。   4 AI+生物识别?眼神科技很有经验 帮你做什么:未来刷脸的世界,你总要先行一步。 周军,眼科科技创始人兼CEO,中欧国际工商学院EMBA、中国企业家俱乐部成员、山东大学管理科学系生物识别专家,专注生物识别、大数据、人工智能研究及场景应用实践20余年,是中国生物识别行业领军人物、多模态生物识别倡导者。 1997年,26岁的周军创立天诚盛业,并于次年开始指纹识别的研发,成为最早进入生物识别领域的企业家之一,也由此开启了其在生物识别领域长久不懈的探索和耕耘。2016年,在人工智能的风口下,周军成立了眼神科技集团,全资控股12家海内外子公司及分支机构,完成了“AI+场景”的全新商业布局,为开拓细分市场及国际蓝海做了重要战略筹备。 从产品形态来说,眼神科技具备集核心算法、统一平台、应用软件、智能终端、实施交付等全产业闭环服务能力,是多模态生物识别的佼佼者,能够实现多场景、多应用、多产品、多种知识技术的统一管理。从场景落地应用来说,金融行业市场占有率超过60%,另外还和万科物业展开智慧社区合作,目前已完成全国100多个小区智慧社区项目;与山东大学、东北大学等100多所高校达成智慧校园建设合作;安防反恐领域,和贵州、山东等多省市公安机关合作,完成平安城市、公路交通、机场等反恐维稳项目建设,建立了国内最大的安防人脸识别系统平台。   5 “目前的企业服务创业,仍是模式创新” 易点租:办公是个大场景 纪鹏程,易点租创始人兼CEO,毕业于清华大学自动化系,获博士学位。纪鹏程有14年创业经验,在2003年创建“SKS精品笔记本”,至今成长为全国首屈一指的笔记本电脑提供商及笔记本电脑维修商。纪鹏程凭借着在二手笔记本行业14年的经验,创立了易点租品牌,2015年3月易点租租赁电商正式上线运营。易点租共进行了获得2.3亿元融资,合作企业2万家,1000家上市公司及独角兽,租赁设备20万台,市场覆盖率超过80%。易点租成为办公电脑租赁与管理平台相对较为成熟的领先企业。   6 牛牛汽车:掌握主动权的平台才有未来 陈琰俊,硕士毕业,现任新车渠道电商平台(简称:牛牛汽车)创始人兼CEO,曾任永达汽车集团销售总监。从管理集团旗下第一家宝马4S店起,直到操盘全国100多家4S店销售运营,带领集团销售团队突破百亿营业收入,并助力永达汽车2012年港股上市,随后主导筹建永达投资集团,进行全国汽车网络布局。牛牛汽车创立于2014年,成立初期即通过APP端切向三四线中小汽贸店,平台连接主机厂、4S店和中小汽贸店的新车渠道交易服务电商平台。目前,牛牛汽车平台上汇聚了近20万的新车经销商行业专家、企业家和从业人员,覆盖85%全国各省市自治区的行业人员,是业内首屈一指的互联网新车渠道电商平台。 2014年,互联网+汽车渠道时机初现,遂携团队创立新车渠道电商平台--牛牛汽车,目前已获得B轮1.1亿元融资。   7 巴乐兔:挖掘年轻人需求这事儿还真有秘诀 吕楠是巴乐兔创始人兼CEO,毕业于美国康纳尔大学,电子工程学士,曾经联合创立中国最大的招聘网站51Job前程无忧,同时也曾经是贝恩公司Bain& Co.中国首席代表,参与设立贝恩中国北京总部,成功投资互联网第一胶原蛋白品牌Lumi,拥有对互联网行业发展趋势的敏锐嗅觉,善于挖掘年轻人需求,对年轻人的行为习惯有深入研究。 巴乐兔是长租公寓C2C平台的代表之一,通过建立规则和规范行业来赋能广大机构房东,给年轻人提供优质的租住体验。巴乐兔主打“好房东”,由房东提供真房源并更新房态,并直接撮合租客房东签约,希望消除房屋中介市场长期由“信息不对称”带来的行业失范和混乱现象。5月份对外正式宣布完成3亿人民币新一轮融资,由天图资本领投,DCM等之前轮次投资人继续加持。据了解,巴乐兔目前业务已覆盖北京、上海、深圳、杭州、广州、南京、成都、西安等10多个城市,管理300万间房屋,服务1万多个活跃机构房东。   8 会小二:是我最先看得起酒店 杨亮,会小二创始人兼CEO,曾是一名记者,后担任金融数据公司CAI Business Indepth助理总经理、财新传媒副总裁。在创立会小二前,他创业并开设过一家软件技术公司。杨亮毕业于中国人民大学,并曾获得香港中文大学MBA学位。会小二主要提供会议场地、活动资源在线预订等服务。包括会议场地、会议搭建、会议签到、会议用车等活动物料的采购,让中小企业办活动更轻松。融资阶段处于B轮阶段。   以上便是对这八家“准独角兽”企业的简单介绍。如果您对他们的业务和这个行业感兴趣,想了解更多的话,有一个好消息是,这八家企业的创始人兼CEO都将出席亿欧“2018全球AI领袖论坛——智能+新服务”论坛。 本次论坛将于6月14日下午13:00在上海举办,主要聚焦讨论服务生活领域的B端服务商,如何用人工智能等新技术创造更多服务形态,以及展开人工智能、智能营销、软件创新、小程序等风口话题。 预知更多活动详情和报名,请点击下方链接吧:https://www.iyiou.com/a/zhnxfw_shanghai_2018 也可以扫描二维码添加群主进入“智能新服务群”哦。        
    AI
    2018年05月23日
  • AI
    下一次跳槽,你可能就要被机器人面试了…… 来源| 企业观察报官微 文| 钱馨瑶     面试——听上去总会让人有点紧张,尤其是面对资深的HR。   一份你梦寐以求的工作要对你进行远程面试,是不是很紧张。当电话响起,深呼吸,给自己泡一杯热茶,在心里默数三秒,然后从容的接起电话。   但是现在,想象一下你的面试官是一个名叫Robot Vera机器人“薇拉”。     “薇拉”有着类似人类女性的外貌,有时佩戴眼镜。Strafory公司创始人之一乌拉克辛告诉美国彭博新闻社,它结合了谷歌、亚马逊、微软和俄罗斯搜索引擎Yandex的语音识别技术,拥有庞大词库。程序还训练“薇拉”从来自电视、维基百科、招聘启事的约130亿条语法和语音例句中学习,以便能够更自然地与人对话、交流。   Strafory公司说,“薇拉”可用于加快对办事员、服务员、建筑工人等蓝领职位的审查,经过筛选简历、向应聘者介绍所应聘的职位及询问他们是否仍在找工作,然后通过视频或语音电话提出面试问题,筛选出约10%的求职者,从而将招聘的时间和成本减少三分之一。   “通过机器学习,”科斯塔列夫解释说,编程机器人维拉收入了140万的访谈,以及维基百科和160,000本书。   当维拉第一次开始进行电话采访时,她确实是按照既定的脚本,但后来就发生了变化。   “维拉能理解面试者提供的答案,”科斯塔列夫通过电话告诉法新社。   虽然机器人招聘员工会吸引那些试图降低成本的公司,但也可能存在另一个更微妙的优势。   “当(候选人)就工作机会给予反馈时,他们(可能)不会直接回答HR最真实的想法,”科斯塔列夫说。   机器人维拉目前有200个客户,其中许多企业主要通过传统面试并从中挑选最终候选人。   偏心危险   坦白地说,人力资源专家正在通过人工智能寻求解决方案,以加速整个招聘流程。   美国公司ZipRecruiter正推出实时选择服务,每个工作机会能够立即在多达100个网站上发布。   眨眼之间,通过算法已向ZipRecruiter注册的1000万求职者进行搜索,以查看最适合职位描述的求职者。   然后准雇主能够收到最佳候选人的候选名单,从而使招聘工作更加省时。   ZipRecruiter负责人伊恩·西格尔(Siegel)告诉法新社记者,该系统运作良好,因为“雇主不擅长描述他们想要什么样的员工,但当他们亲眼见面试的候选人时就会知道他们想要什么”。   “这就像我们的私人生活,”他说。    
    AI
    2018年05月17日
  • AI
    70%的银行工作将被AI取代,其他行业也将沦陷? 文| penny crosman 来源| American Banker 智能化这个概念已经引起怀疑他们将被机器人取代的工人内心的恐惧。 现实跟工人们的想象还是有微妙差别的。毫无疑问,一些工作将会丢失。但其他工作将会诞生,而其他人将会变成一些不同的角色 - 比如机器人设计师,机器人主管,最愤怒的客户的安抚者。在大多数情况下,人工智能只会承担无人想做的繁琐工作。   还有一个真实的例子,位于阿肯色州的Wynne第一国家银行一直在使用自动化流程机器人(可以算是智商最低的人工智能了)来帮助完成收购。 “当你收购一家银行时,最大的成本开支之一是核心系统的转换,”高级副总裁Bart Green解释说。所有的客户和账户信息,包括卡片,网上银行和现金管理等信息,都必须迁移到收购银行的核心系统。这是非常耗时的工作。   一位顾问告诉了他们关于EnableSoft开发的名为Foxtrot的RPA软件。 RPA软件的其他提供商还有Blue Prism,UiPath和WorkFusion。 RPA软件可以设置成按照人类的方式执行任务 - 它可以通过输入用户名和密码登录到软件,它可以单击客户端记录,然后登录到另一个软件,找到一个数据字段并复制将该数据粘贴到第一页。它可以设置成在桌面上观看它操作的形式,就好像你在看一个鬼魂操作计算机。 “你可以教它,就像你教授员工如何向系统输入信息一样,接着它会高效快速地完成你安排的任务,”格林说。在报告错误和验证数据方面,RPA比真人做的更好。 他说,使用该软件已经为银行节省了70%的转换成本。   现在这家银行开始为该软件寻找其他用途。 “这是一个思考今天银行业有什么手动,耗时的过程,我们如何实现自动化这些繁琐的过程?”Green说。 例如,由于违规,银行最近不得不大量补发借记卡。这完全可以通过机器人完成。 格林说,RPA软件迄今为止在银行尚未受到影响,因为它仅被用于像兼并这种一次性、耗时的项目。 “我还没有让这个软件取代员工的日常工作,”他说。 “不过我可以看到这迟早会发生。我处于刚刚揭开这种可能性的阶段” 他还准备雇佣有RPA软件经验的IT人员来帮助银行找出新的用途。 “它最终可能会取消工作 - 你正在创造一项工作,来完成消除另一名员工日常工作的任务,”格林指出。     什么工作会消失,或者诞生? 一些银行家和专家认为,只有工作中无聊的部分,像数据输入和填写表格这样的苦差事才会消失。未来的人类将能够专注于更有趣的任务,并且工作不会真正的消失。 银行员工自己似乎也这么想。在埃森哲上周发布的1300名底层的银行员工调查中,67%的人表示他们认为人工智能将改善他们的工作与生活平衡,57%的人认为它会扩大他们的职业前景。     但Autonomy Research上周还发布了一份报告,估计仅在美国就有250万名金融服务人员在前台,中层和后台“接触”人工智能技术--120万人在银行和贷款方面工作,46万人在投资管理方面和865,000人在保险方面。   报告指出:“这些职位将迎来20-40%的生产率或失业率增长,这取决于你的个人优势。” 报告显示,到2030年,约1万亿美元的成本将投入金融服务行业的人工智能转型;其中的4.5亿美元将用于银行业务。 研究人员称,在银行业务中,70%的前台工作将由AI取代,其中包含了485,000个出纳员,219,000个客户服务代表和174,000个贷款采访员和文员。他们将被聊天机器人,语音助理以及自动认证和生物识别技术所取代。   随着基于人工智能的反洗钱,反欺诈,合规和监控软件的出现,96,000名财务经理和13,000名合规官员将被解雇。另有250,000名贷款官员将失去工作,取代他们的是以人工智能为基础的信贷承销和智能合约技术。 但是,埃森哲上周关于人工智能对金融服务业就业的影响的研究报告显示了一个更加乐观的工作图景。它得出的结论是,在明智部署人工智能的公司中,将获得14%的净收入;到2022年他们还将增加34%的收入。   新收入的一个重要来源是自动化。自动化可以帮助人们做更多的事情,或者更有利可图的投资,比如Netflix和亚马逊推荐电影和产品的方式。这可能会导致账户整合和交叉销售。 埃森哲高级董事总经理兼公司银行业务负责人Alan Mclntyre说:“人工智能将会消除一些职位。 但我们认为正确部署人工智能也会创造一些新的职位的机会。” 例如,使用人工智能软件并产生了可疑的活动报告的银行很可能会创造出新工作——向监管机构解释人工智能方面知识。 “监管机构不会成为不易解释的“黑匣子”决策的主要倡导者,”McIntyre指出。     入门级工作在哪里? 随着出纳员,反洗钱和其他工作变得通过RPA软件和AI实现自动化,人们可以在何处找到针对失学或残疾人士的入门级工作? “这是一个棘手的问题,”Autonomous金融技术全球总监Lex Sokolin说。 “这是一个必须由每家大型财务公司的首席执行官所关注的问题 。这些公司聘用人工智能软件取代人力资源工作,而且这个问题将一直由构建软件的创始人和开发人员负责。如果您通过构建成功的软件来创造真正的结构性失业,那么您必须将您的员工视为项目中的利益相关者。“     Mclntyre认为入门级工作也必须采用技术。 他说:“人们可以看到数字原生公司雇用具有编程能力的大学毕业生。我确实认为,以出纳员的身份出现在CEO面前的想法很困难。” 那些不擅长数学,科学和编程的人呢? McIntyre说:“仍然会有需要优秀的移情和社交能力的工作。举例来说,如果某人有10万美元的投资,AI可能会建议其进行资产分配。但如果他是一位父母刚刚去世的继承人,那么与他的互动的工作人员将需要具备同情心。 “这些类型的对话将要求人们有很高的情商,他们要能够阅读人们的情绪,并做出适当的反应,引导对话”, 麦金太尔说道。     谁具备更高的情商 - 人类还是机器人? 不是每个人都相信人类在情感工作上更好,比如在处理悲伤或愤怒的顾客方面。 Sokolin认为AI系统非常擅长情绪类劳动。他举出金融科技类的机器人TrueAccord,这个AI处理银行和发卡机构的收款工作。 “他们所做的一切都是情绪化的劳动,而且他们比晚餐时给你打电话的人要好得多,”他说。     TrueAccord首席执行官Ohad Samet表示,技术擅长以人类不会的方式避免紧张局势。 “收藏界的人们喜欢说人们从人们那里收集,但现实是收藏家是人类,会受到人类的偏见:他们会生气,他们会感到疲倦,”他说。 “如果债务人老是收到电话骚扰,这种情况并不罕见,他们会有情绪反应。但是软件不受这种限制,”Samet说。 “它使用最好的渠道,最好的内容,在适当的时候提供最好的报价,而且如果有人大声疾呼或写了一些令人讨厌的事情,它就不会冒犯或行为不端。” 而且软件确实内置了一些同情心。 尽管使用AI后,人类收藏家就会更少。但Samet指出,这些工作没有什么乐趣,而且他们付出了很大的代价。最重要的是,顾客不想与人类收藏家进行交谈。     “世界正在改变,”他说。 “我们不是造成改变的人。消费者的喜好正在改变收藏品行业。” TrueAccord是AI创建新工作的一个例子。它有一个不断增长的客户参与团队,他们帮助那些打电话或发电子邮件的人。一些员工写下聊天机器人目前的内容。其他人则是致力于根据消费者的需求调整体验的数据科学家。     聊天机器人的反弹 有几家银行引入了聊天机器人来完成本来由客户服务人员完成的工作。美国银行的Erica就是一个例子。 USAA的Alexa聊天机器人是另一个例子。 还有一些关于聊天机器人的争议和反弹。有微软的Tay,它向用户数出了种族主义言论。 金融科技创业公司Digit提供自动储蓄和信用卡债务支付服务,这家公司不再让聊天机器人成为与其应用交互的主要手段。对于Digit客户所做的简单任务,这似乎并不是正确的做法。 索科林指出,工具只对特定的目标有意义。要获得帐户余额,简单的登录和点击是合乎逻辑的。打开Facebook Messenger并询问它并不是合适的做法。 像许多银行家一样,格林一直犹豫要不要部署一个面向客户的聊天机器人,这样就可以替换前台接待员和需要导航的电子菜单了。 “你仍然可以得到你需要的结果,但问题是,人工智能会如何区分另一方,感受到他们的问题中包含的情绪?”他说。 “如果客户感到不安,开心或兴奋,AI如何能够适应这种情况?Amazon Echo聊天机器人了解不同的方言,令人印象深刻,但它能够理解那次谈话的情感吗?”   Green表示,使用AI还会面临声誉风险。 “如果一个人犯了错误,你可以解雇他们,”他说。 “如果AI不断犯错误,那么你有很大的声誉风险,而且很难克服。你打算开火吗?“ 由于这些原因,一些银行正在为员工提供聊天机器人技术,以帮助他们提高效率。例如,摩根士丹利为其财务顾问配备了人工智能软件,通过客户数据和记录筛选以帮助提出建议。     重新训练劳动力 埃森哲对银行家的调查发现,只有3%的人投资对员工进行再培训,为人工智能工作场所做好准备。 麦金太尔表示,这是因为技术仍然是新的,银行只是在交易,贷款和客户服务等领域测试AI的使用情况;他们还没有看到更大的图景。 索科林说,银行需要帮助员工向AI过渡。例如,他们可能会使用软件,让蓝领工作者成为使用可视工具的程序员。     大学可能需要为人工智能做更多的准备。 加拿大皇家银行呼吁对大学课程进行全国审查,以确保他们更多关注“积极倾听,批判性思维和社会洞察力”等“人类技能”。 该银行的研究发现,这些技能将有助于定位未来的工人,以补充机器人和机器等日益普及的技术,而不是与他们竞争。 索科林对年轻一代的担忧不如对年长一代的。年长一代可能更难转向以人工智能为辅助的工作,而且他们的债务和储蓄较高,因而受到更多的威胁。 “这成为一个相当焦虑的图景,”他说。 “这是雇主的责任。人们不得不举起手来说我们会采取一些措施来解决或软化它。”     行政人员现在是安全的 现在,银行高管的工作似乎对AI来说是安全的。供应商并不建议他们的软件可以做C套件工作。 据Sokolin说,人工智能在流程切换方面做得不好。 “今天AI领域依旧非常狭窄,”他说。 “你选择一个你想要它锤击的方向。你教给你想要的结果,而且AI通常可以创造出你想要的结果。“ 一位主管可能会使用一段时间的电子表格,然后管理一段关系,然后开展一次业务开发会议,接着与一家破产的LLC客户进行交易。 “所有这些流程都需要很多不同的技能,”索科林说。 “在当今高级管理层的机构中,有很多类型的流程切换。”     但随着人工智能得到更广泛的采用,管理人员将在高层采用不同的技能组合。 而一个有趣的问题可能会变成:如果你管理的人数更少,机器人更多,那么这对组织中的权力基础会有什么影响?   以上内容由HRTechChina AI编译,仅供参考      
    AI
    2018年05月08日
  • AI
    人工智能与自动化在HR与未来劳动力中的影响和应用 文|Soumyasanto Sen 来源|Digital HR Tech   人工智能(AI)几十年来一直在改变我们的生活,但今天它的存在感比以往都要大得多。有时候,当一个新的人工智能驱动的系统,工具或产品出现并超越我们人类时,我们甚至都没意识到这个事实。事实上,人工智能正在影响着各种各样的人类生活,从以下几个方面来看: 繁琐,耗时的任务的自动化; 人类能力的增强和; 人类功能的放大。 “虽然这种AI技术的大部分使用目前非常简单,但它正在彻底改变我们的日常生活; 无论是职业上还是个人生活中。” 然而,人力资源和劳动力的人工智能和自动化的好处并不是即时产生的。这是一段旅程,人们可以看到自动化过程的短期收益,增强的中期收益以及最终扩大人类活动或任务的长期收益。 让我们更详细地看看人工智能和自动化对人力资源和劳动力的各种影响。首先,我们来看看历史上是怎么说的,以及这种向人工智能和自动化的转变如何持续了很长时间。之后,我们将探讨我们如何采用这项新技术,以及作为一个组织前进的基本策略是什么,同时将潜在威胁转化为机遇。 人工智能与人力资源自动化:影响与现状 如今人工智能无处不在,关于它如何影响工作的未来,则需要考虑很多方面。 “现在它几乎可以渗透到每一个软件中,”德勤的Bersin负责人兼创始人Josh Bersin说。根据德勤Bersin的研究,近40%的公司仅在人力资源部门就会使用某种形式的AI。 据Personnel Today介绍,38%的企业已经在他们的工作场所使用人工智能,62%的人希望早在今年就开始使用。根据德勤的Bersin,33%的员工预计在不久的将来他们的工作将会增加与AI的协作。 人工智能存在于几乎所有主要行业,从医疗保健到广告,交通,金融,法律,教育以及现在也在我们的工作场所。 我们已经越来越多地在个人生活中使用聊天机器人和虚拟助手,现在我们也可以期望在工作场所中使用它们。例如,AI协助我们找到新工作,回答常见问题,或接受辅导和指导。在组织中使用AI可以帮助我们创建更加无缝,更灵活,更偏向用户驱动的员工体验。 让我们看看劳动力日常生活中的典型工作日,以便我们清楚地看到AI的一些十分常见的实际用途。 清晨在家 许多智能家居设备具有了解您的行为模式并且帮助您节省资金的能力。像Nest恒温器有助于增加日常便利性并节省能源。 Amazon Alexa,Siri,Google Now和Cortana都是各种平台上的智能数字私人助理。 “今天的交通情况如何?”,“我的日程安排是什么?”,“提醒我在十点钟给X先生打电话”,这些助理的反应非常迅速。 在去办公室的路上 我们可能已经看到有人在驾车上班时阅读报纸(尽管目前风险很大)。但是自动驾驶汽车正在变得越来越有效率; Google的“WA YMO“和特斯拉的“Autopilot”就是两个很好的例子。 在赶着进入办公室时,没有时间找到你选择的新音乐? Spotify使用深度学习来创建最终的个性化播放列表,并根据用户的预先聆听行为提供新的音乐。 下午在办公室 海明威(Hemingway)应用程序使用简单的人工智能,通过自然语言处理来识别书写问题,并打磨您的书写结构。它有助于节省时间并提高可读性。 现在我们不需要因为那些有语言障碍的会议感到困扰了。目前,Skype的翻译器使用8种语言,文本翻译人员可以使用超过50种语言进行即时消息传递。 在电话会议上记笔记有时很困难。Clarke.ai 是一个人工智能机器人,可拨入您的电话会议并完成整个笔记为您工作。然后,当通话结束时,它会直接将电子邮件发送到您的收件箱。 我们通常会在我们的收件箱中堆放一堆电子邮件,即使不包括垃圾邮件。Google的智能回复功能使用机器学习功能来分析您的电子邮件,并给出您可能想要发送的快速,简短的回复的建议。 离开办公室的时间 为你的团队找到合适的人选并非易事。Paradox使用Olivia作为AI助理,让你专注于整个候选人管理。 VCV是一个负责招聘的人工智能机器人 ,它可以搜索候选人,给他们打电话并利用语音识别功能询问问题,然后邀请他们录制视频面试。Glider是另一个类似的例子,它会将你的招聘放在AUTO-PILOT上。 需要为你的直接报告人推荐课程,但无法腾出时间? SAP SuccessFactors,Comertone和许多其他公司已经提供类似的功能,以推荐基于个人职业生涯跟踪和绩效的课程。 在回家的路上 忘了安排明天的会议? AI公司x.ai推出了“Amy”,这是一个虚拟个人助理,可以自动执行安排会议的过程。 想在到达你家之前买东西但不记得了吗? Capitan是您在使用时自动学习的智能购物清单,为您节省时间并避免错过的物品。 晚上在家 一旦你到家,需要放松。Netflix根据您表达的兴趣和您过去做出的判断推荐电视剧和电影。 不需要花费时间来搜寻为周末或假期购买的东西,毕竟你已经非常疲劳了。亚马逊的预期航运项目希望在您需要某些物品之前就向您送来它们。 The North Face是IBM Watson平台,以更具吸引力,个性化和相关购物体验的方式为你寻找一件最完美的夹克。   这些只是几个例子。无论您是否意识到,AI已经对我们的日常(工作)生活产生巨大影响。对于我们大多数人来说,人工智能技术正在帮助我们更有效地完成工作,并且通常使我们的生活和工作更加轻松。 因此,AI在改变人力资源和劳动力方面发挥着重要作用;减少人为偏见,提高候选人评估效率,改善与员工的关系,改进可塑性,提高度量标准的采用率以及改善工作场所学习都是组织今天正在经历的一些好处。 珍妮·梅斯特(Jeanne Meister)在她的文章“工作的未来:人工智能和人力资源的交叉点”中指出,HR领导者如何开始尝试人工智能的各个方面,为他们的组织提供价值。据她介绍,HR领导者正在开始试点人工智能,通过使用聊天机器人进行招聘,员工服务,员工发展和辅导,为组织提供更大的价值。 到目前为止,招聘和人才挖掘是AI解决方案中最有效的领域。越来越多的把HR作为目标的创业公司和服务提供商将基于AI的解决方案用于以下活动: 采购(例如Textio); 面试(myInterview); 入场(Talla); 教练(Saberr)和; 员工服务中心(ServiceNow)。 “目前,这些针对HR和劳动力的基于人工智能的解决方案更像是由数据驱动的分析产品,并且由下一代People Analytics提供支持。” 谈到HR领域的AI时,根据Bersin的说法,“人工智能的应用基本上都是分析应用,软件使用的历史、算法和数据会随着时间变得越来越智能。”人们分析的最有趣部分是人工智能和人工熟练程度之间的接口。 AI投资呈指数增长。研究公司IDC预测,人工智能市场将从2017年的125亿美元增长到2020年的460亿美元,会影响几乎所有行业的所有业务实践。 麦肯锡研究院在其2017年1月的报告“未来如何工作:自动化,就业和生产力”中提到,先进的机器人技术和人工智能等自动化技术是促进生产力和经济增长的强大动力,有助于创造经济盈余,增加整体社会繁荣。 根据麦肯锡的说法,自动化可以使全球经济的生产力每年提高0.8到1.4个百分点;假定被自动化取代的人力工作重新加入劳动力队伍的话。 另一方面,他们的自动化分析发现各个经济部门以及这些部门的职业之间存在显著差异。考虑到影响自动化速度和程度的技术,经济和社会因素,麦肯锡估计,目前的工作活动中高达30%可能会在2030年前取代。 “麦肯锡估计,到2030年,目前的工作活动中高达30%可能会被取代” 当人工智能及其对就业和经济的影响的话题出现时,谈话的主要焦点曾经是蓝领工作。根据CB Insights和State of Automation Report,仅在美国就有4600万零售销售人员因AI而面临失业风险。同样的事情发生在430万厨师和服务员,380万清洁工,2.4M搬运工和仓库工人,180万卡车司机和120万建筑工人。 根据CB Insights的观点,越来越多的AI注入式专家自动化和增强软件(EAAS)平台将引领我们迈向AI辅助和/或AI增强生产力的新时代。这些EAAS平台使用机器智能来复制和增强人类的理解和认识。 这种AI增强的生产力也开始威胁白领工作,比如影响到律师,人力资源,教师,销售,市场营销,研究人员,会计师,软件开发人员等大多数常见职业。 “AI和自动化是否会夺走我们的工作?这个问题在过去曾多次被提出,只要我们能够为自己的未来而努力,答案就是'不'。然而,我们可以期望我们的工作有结构性转变。” 历史和转变 现在许多使用的AI和机器学习的算法已经存在数十年了。近半个世纪以来,先进的机器人,自动驾驶汽车和无人驾驶飞行器(UAVs)已被国防机构使用。 技术一直引发人们对大规模失业的担忧。自称解决主义者,promethean兼设计师Louis Anslow在他的出版书籍“Robots have been about to take all the jobs for more than 200 years”中解释了这一反应。在20世纪30年代,他被称为经济学家约翰梅纳德凯恩斯(John Maynard Keynes),将技术作为大萧条失业的一个原因。因此,这一直是一个热门话题。 BBC Capital最近发表了对未来工作毫无根据的担忧的历史,并在其中指出,早在1959年,数学家I.J. Good的预测到,“科学技术的所有问题都将交给机器,人们不再需要工作”。 麦肯锡研究所最近发​​表的另一篇文章“工作的未来会对就业,技能和工资意味着什么”表明,这种技能转移或就业流离失所现象并不新鲜。 左图标题:1850到2015年间,美国各行业部门的员工总数份额 右表标题:1850到2015年间,就业的改变 第一次工业革命始于18世纪的英格兰,欧洲,美国和其他国家的经济自那以后经历了两次剧烈的结构变革。机械化推动了农业和工业的革命,鼓励工人从农村迁移到城市。过去60年来发生了第二次结构性转变,一些国家制造业的就业份额下降,而服务业的就业份额开始增长。 根据麦肯锡的研究,伴随这一结构转型过程的就业转移十分剧烈。在整个行业中大量劳动力转移的情况下,整体就业人数占总人口的比例普遍持续增长。 像美国,中国,印度,德国,日本和巴西这样的全球经济体将比印度尼西亚,韩国,土耳其等新兴经济体受到的影响更大。人工智能和自动化的影响依赖于国家的收入水平,人口和产业结构。 期望与现实 那么,人工智能和自动化将使我们的工作自动化吗? “到目前为止,人工智能和机器人不是用来”自动工作“,而是用来”自动化任务“和”增强“人类功能,从而提高生产力和性能。” 我们大多数日常工作都与文书工作,日程安排,时间表,会计,费用等任务相关(平均百分比如下所示)。 当然,将这些重复的任务外包给数字助理或自动化软件是非常有用的,从而腾出更多的时间进行深入的思考和创造。 当谈到如何利用当前市场上可用的人工智能认知技术,迄今为止他们的主要影响是扩大现有的工作职能,而不是消除工人。能够推理,学习并与人自然互动的机器或系统可能会继续消除重复性任务,帮助员工更好,更快地完成工作,腾出时间完成更有趣的任务。 对于大多数劳动力来说,认知技术可能使他们能够进入新的、更有价值的角色。 因此,大多数组织及其员工可能会从基于AI的技术和自动化中体验到积极的影响。 人类未来研究所(FHI)、耶鲁大学、牛津大学和政治科学部门(Department of Political Science)实际上揭示了一个问题——人工智能会超越人类的表现吗? 根据他们的研究,机器超越人类的时间将会非常长。如果所有任务都是成本效益更高的机器,那么AI将会产生深远的社会影响。 他们的调查采用了以下定义:“高级机器智能”(HLMI)是在无人帮助的机器能够比人类工作者更好,成本更低地完成每项任务的情况下实现的。 例如时间线显示实现所选AI里程碑的概率为50%。具体而言,时间间隔表示从25%到75%的事件发生概率的日期范围。 应用和战略 从所有这些分析中可以清楚地看到,在可预测的环境中(包括生产工人,建筑和地面清洁工)涉及(很多)体力工作的职业以及办公室辅助人员(如文员和行政助理)可能会因人工智能和自动化而开展的活动面临重大影响。另一方面,医生和专业人士,比如工程师和商业专家则不太可能经历太多的影响。 目前的职业教育需求水平往往与这些活动自动化的可能性呈正相关。比起那些只需要高中文凭和一些经验的职业,需要高等教育的职业通常包含了自动化更少的工作内容。 “受自动化影响的工作人员很容易被识别出来,而由技术间接创造的新工作和技能组合的转变在各个行业和地区都不太明显,并且分布广泛。” 世界经济论坛“就业的未来”报告着眼于未来的就业,技能和劳动力战略。报告的作者向全球领先企业的首席HR主管和战略主管询问了目前的转变意味着什么,特别是针对跨行业和地域的就业,技能和招聘。 他们发现AI和自动化的最新发展将改变我们的生活方式和工作方式。一些工作会消失,另一些工作会增长,而今天根本不存在的工作将会变得司空见惯。可以肯定的是,未来的劳动力队伍需要调整其技能以跟上节奏。 未来技能 复杂的问题解决 批判性思维 创造力 人员管理 情绪智力 建立关系 谈判 认知灵活性   有风险的技能 记录和报告 行政的 体力劳动 可预测的分析 质量控制 校准 驾驶或骑马 信息收集   根据未来工作与消费研究员Laetitia Vitaud的观点,我们现代企业的大部分人力资源部门都已经成为把人当作资产一样管理、按照流程驱动的“机器”,而不需要关注个性化、独特的人。 相反,HR部门运行自上而下的流程设计'系统' - 招募大量人力资源,处理工资,组织年度评估,同时批量对员工进行培训等等 - 为员工的个性化,灵活性以及创造力留下少许空间。 Laetitia在她的出版物“AI能否将‘人’投入到人力资源?”中解释说,许多HR专业人员不了解的是,AI如何提供独特的机会来重新定义人力资源,并提升其相关性。 简而言之 因此,人力资源部门的关键是开发人工智能和自动化战略,首先要分析AI将会重新定义哪些工作角色,流程和工作流程。 Jeanne Meister在最近的文章“AI +人类智能是工作的未来”中指出,人们可以开始思考人工智能和自动化对工作任务,关键工作角色和工作流程的影响。你可以简单地开始问: 自动化:该角色中的哪些关键活动可以自动化以提供更高的效率和有效性来完成日常任务? 扩张:如何通过应用人员分析来确定新的业务洞察力以创建更好的战略规划和行动,从而创造更多价值? 放大:AI技术可以重新设计哪些工作过程和流程来促进人类活动和决策制定?   下图显示了HR和劳动力需要的AI战略所需的关键因素。基于这些基本原理和重要因素,我们便可以为企业及其(未来)人才创造价值主张。 AI战略中基本、重要的要素 基本原则 领先的正确思维 清晰的视野和商业案例 使用正确的管理方式 使用创新模式的COE   要素 领导力和整体方向 人才与变革管理 道德,合规和公正 扩展主动性和策略   技术不仅是创造最佳员工体验的关键推动力。有了正确的准备,HR部门的领导可以利用这些概念提供创新的文化。以最有效的方式实现数字化和自动化肯定会提高组织的人员绩效。 未来掌握在我们自己的手中,我们应该通过接受我们的未来是人类与机器之间的合作这一事实,来规划并实施必要的策略,为我们自己的美好未来做好准备。
    AI
    2018年05月04日
  • AI
    未来照进现实:AI帮助求职者寻找,得到和保留梦想的工作 文|Alana Rudder 来源|Towards Data Science 刚从商学院毕业,劳拉开始在网上找工作,她的简历恰当地表现了她这些年的努力成果。因此,她很快接到了一个电话,来自一家对她的才能非常感兴趣的商务旅行社。劳拉接受了面试,穿着一套新的西装,手里拿着一份精美并且与今天的面试相关的简历,她早早出现了30分钟,准备展现出自己最好的一面。 一小时后,一名助理将她带到了CEO的办公室。然后劳拉开始执著于介绍她从哪里来,她的父母是否是大学毕业,他们是否患有任何精神疾病,以及他们为谋生做了什么(“只是为了确保她是专业的料“),她是否已婚或有孩子,以及她如何吸引对商务旅行并不感兴趣的潜在客户。为了结束采访,CEO非常尴尬地表示,他不在乎他即将退休后公司会发生什么事。劳拉礼貌地感谢首席执行官,离开时希望机构再也不会再给她打电话了。可悲的是,四个月后,她确实收到了回电。 是的,这是一个真实的故事。 不幸的是,这样恐怖的面试故事并不少见。   打破招聘过程意味着求职者要用更多的时间寻找工作   财富500强人力资源(HR)高级副总裁兼福布斯HR作家Liz Ryan证实:“招聘过程已经破裂了20年,但其权力下放的步伐近来一直在增加。” 而且,即使在得到工作之后,糟糕的招聘流程也会转化为不太有利的就业体验:65%的人在被雇用后的3个月内开始寻找下一份工作。 好消息是求职者现在有一个即将到来的同伴准备为他们的利益而战:人工智能(AI)。   人工智能帮助求职者取得更好的、长期的成功   Ken Lazarus,Marlina Kinnersley,WorkFusion,Scout Exchange,Fortay.ai以及无数的AI公司正在壕沟中研究,建立和磨练猎头可以依赖的AI平台来改善体验。他们的专业知识和解决方案揭示了人工智能在幕后工作的四种方式,以提供更流畅,更成功的求职旅程。   AI帮助求职者找到与自己技能匹配的合适定位   在寻找可用的职位时,求职者需要搜寻公司,写一份符合该职位的简历,然后写求职信,联网,并为每个空缺职位参加好几次面试,对他们来讲,求职往往是一份全职工作。当求职者不会筛选出不太可能符合他们技能的职位时,AI就尤其重要了。人工智能使求职者寻求相关的就业机会更加高效,因此更加成功。 Scout Exchange是一家为初创品牌和财富10强企业提供服务的人才匹配平台,它的首席执行官肯·拉扎勒斯(Ken Lazarus)解释了求职者如何依靠人工智能。他说,优秀的招聘人员对他们的行业了如指掌,包括完成各自工作所需的技能,以及在重要雇主面前赢得观众的关系。 “如果我在弗吉尼亚州,而且我想为政府进行国防研究和分析工作,那么招聘专家就是这方面的专家,找到工作的最好方式就是了解他们,”他说。 但是,并非所有招聘人员都同样擅长工作。因此,他强调求职者与正确的招聘人员建立关系的重要性。他们可以使用AI支持的Scout Exchange来评估参与招募者。为此,他鼓励求职者向招聘人员询问他们的平台评级。 侦察交换生成一个人工智能驱动的评级,反映了每个招聘人员匹配候选人与工作的成功程度。一个糟糕的评级提醒求职者招聘人员不太可能推荐他们去做值得他们付出努力和时间的工作。   AI帮助求职者找到完美的工作文化   组织文化有无穷无尽的变化和怪癖。 一个组织可能会有随意的沟通方式,但有一个强大的层次结构,而另一个组织则有正式的社交规范,但强调团队合作和扁平化的组织结构 同样,求职者也有同样多样的工作环境偏好。 他们可能更喜欢创业文化,单位组织,强有力的社会环境,团队环境或独立工作。 为了确保候选人继续参与并致力于他们提供的工作,人才公司倾向于通过人工智能来将求职者的组织文化偏好与符合他们需求的公司相匹配。 尽管许多与人才匹配的平台都是供雇主使用的,但Fortay为求职者提供了一个测验,他们可以确定他们最可能有发展前途的公司文化。 一旦测验完成,Fortay的人工智能算法将编制相关公司名单。然后求职者会收到收件箱中的公司名单,并附上一个按钮,一旦推送完毕,该按钮将引导他们通过申请这些公司内的现有职位。   AI确保招聘偏见不会造成求职障碍。   研究表明,即使我们不打算这样做,人类也会无意识地产生偏见。 因此,招聘偏见可能为求职者创造路障。 “如果我们假设人们有偏见......那么我们知道,无论我们拥有哪些数据集都会有偏见,因为该数据集是基于过去发生的人类决策,”Ken Lazarus解释说。 因此,他说有经验的数据科学家通过程序算法来消除招聘偏差,从而防止算法污染。 好消息是,由于数据集规模较大,数据科学家依赖人工智能,他们可以减少偏见对未来工作的影响。 例如,Ken知道男性或女性招聘人员推荐符合其性别的求职者的可能性高出25%。 因此,当一名男性招聘人员推荐四名男性候选人时,Scout Exchange的数据科学家将其中的一名删除,以消除结果偏差。 然后,他们将这个公式编程到他们的天赋匹配算法中,以防止偏见被误解为未来的预测。 一旦编入人工智能算法,这个公式就会被缩放,以影响数百万人才匹配事件。 反过来,由于雇主收到的候选人名单较少,求职者在其行业和重要雇主之前享有公平的代表性。   AI有助于内部员工与增长机会相匹配   到目前为止,我们已经看到AI如何在幕后帮助求职者找到工作。 但是,即使候选人被录用后,人工智能仍然继续工作,以确保他们保留他们辛苦得到的工作,并从那里获得成功的职业生涯。 例如,WorkFusions AI支持的SmartCrowd解决方案使品牌能够监控员工绩效,以确定员工可以开发新技能的区域。然后,它制定了提供培训计划,以便员工在现有岗位上获得成功,并有更多晋升机会。 此外,它监控员工以查明其优势,然后将工作分配给绩效评级最高的员工。这意味着人工智能在幕后进行工作,以挑选出最适合现有内部职位的员工,然后推荐给那些经理进行晋升决策。   最后,诚实允许求职者与AI在工作旅程的各个阶段一起散步   劳拉了解到,接受每一次面试都可能是一个错误。不相关的技能组合,错位的文化偏好,招聘倾向和不良的在职成功倾向可能导致恐怖故事般的面试,甚至更糟糕的工作经历。 但是,人工智能显然可以让求职者的旅程更轻松。而且,还有更多好消息:它只会从这里变得更好。越来越多的数据集和不断的AI学习意味着像WorkFusion,Fortay和Scout Exchange这样的AI平台将变得更加智能和高效。 Ken Lazarus说,求职者从所有人工智能提供的服务获利的诀窍是现在和未来都保持诚实,简单来说就是确保简历与工作表现和技能集合保持一致。在此过程中,您可以提供AI数据集,为就业旅程各个阶段的所有求职者创造更加美好的未来。        
    AI
    2018年05月03日
  • AI
    思考:人工智能伦理的3个基本步骤 如何通过人工智能将道德应用于更安全的未来 关于人工智能(AI)的未来,有两种思想流派: 乌托邦的观点:智能系统将迎来一个启蒙的新时代,人类从工作中解脱出来追求更高尚的目标。人工智能系统将被编程以治愈疾病,公平地解决争端并且只会以有利于我们的方式增加我们的人类生存。 世界末日的观点:智能系统将窃取我们的工作,在进化中超越人类,成为战争机器,并根据当前的需求优先考虑遥远的未来。我们控制它们的可疑努力只会揭示我们自己的缺点和较低的将道德应用于我们无法控制的技术的能力。 与大多数事情一样,事实可能是在中间的某个地方。 无论你在哪个领域工作,重要的是要考虑随着技术的发展人类可能如何影响人工智能。一个想法是人类将主要形成人工智能的良知或道德结构。但是,我们将如何做到这一点?我们如何将道德应用于人工智能以帮助防止最糟糕的事情发生?   人与人之间的关系 深度学习系统的强大之处在于他们确定自己的参数或特征。只要给他们一个任务或目的,指出他们的数据,然后他们处理剩下的事情。例如,自动校准能力在SAS®可视化数据挖掘和机器学习可以计算出为自己的最好成绩。但人们仍然是这一过程中最关键的部分。 “人类解决问题而不是机器,”SAS的AI专家Mary Beth Ainsworth解释说。“机器可以提供解决问题所需的信息,然后进行编程,以自动化的方式解决这个问题 - 基于解决问题的人性化解决方案。” 虽然未来的人工智能系统也可能收集他们自己的数据,但大多数现有系统依靠人类来提供输入参数,包括通过学习定义确定的数据和最佳结果,如强化学习。当您要求算法找出实现该结果的最佳方法时,您不知道机器如何解决问题。你只知道它会比你更有效率。 鉴于目前人与AI之间的这种关系,我们可以采取一些步骤来更加道德地控制AI项目的结果。我们从这三点开始。 人类解决问题,而不是机器。机器可以显示解决问题所需的信息,然后进行编程,以自动化方式解决该问题 - 基于针对问题提供的人性化解决方案。Mary Beth AinsworthAI和语言分析策略师SAS  AI道德规范第1步:提供最好的数据 人工智能算法通过一组用于通知或构建算法的数据进行训练。如果您的算法将鲸鱼识别为马,显然您需要提供更多有关鲸鱼(和马)的数据。同样,如果您的算法将动物识别为人类,则需要提供更多关于更多不同人类的数据。如果您的算法做出不准确或不道德的决定,可能意味着没有足够的数据来训练模型,或者学习强化不适合达到期望的结果。 当然,也有可能人类可能在不知情的情况下,通过有偏差的数据选择或错误配置的强化值将他们的不道德价值注入系统。总的来说,我们必须确保我们提供的数据和输入为算法绘制完整和正确的图片。 AI道德规范第2步:提供适当的监督 为所有AI项目建立清晰的所有者和利益相关者的治理体系。定义您将使用AI自动执行哪些决策,哪些决策需要人工输入。为流程的所有部分分配责任,并对AI错误负责,并为AI系统开发设定明确的界限。这包括定期监控和审计算法,以确保偏差不会蔓延并且模型仍按预期运行。 无论是数据科学家还是专门的实践伦理学家,都应该负责AI策略和协议,包括合规性。也许有一天,所有的组织都将建立起人工智能伦理主义的角色。但是不管标题如何,有人必须负责确定产出和绩效是否在给定的道德框架内。 正如我们一直需要治理,可追溯性,监控和标准分析的改进一样,我们也为人工智能提供服务。然而,AI的后果更为严重,因为机器可以开始提问并自己定义答案。 AI道德规范第3步:考虑新技术的后果 为了让个人执行政策,该技术必须允许人类进行调整。人类必须能够选择和调整训练数据,控制数据源并选择数据如何转换。同样,人工智能技术应该支持强大的治理,包括数据访问以及指导算法不正确或在符合道德界定的边界之外运行的能力。 无法预测AI的所有潜在情景,但重要的是要考虑可能性并对正面和负面的强化进行控制。例如,引入新的甚至是竞争性的目标可以奖励符合道德标准的决策,并将不道德的决策视为错误或误导。AI系统旨在提高质量和效率的同等重要性,而不是完全侧重效率的系统。此外,设计一个具有多个独立和相互冲突的目标的AI系统可以为系统增加额外的责任。 不要回避AI道德 人工智能可以提高汽车安全性并诊断癌症 - 但它也可以选择巡航导弹的目标。所有AI功能都有相当多的道德分歧,需要从多个角度进行讨论。我们如何确保AI的道德体系不被滥用? 以上三个步骤仅仅是一个开始。他们会帮助你开始关于为你的组织开发道德AI准则的艰难对话。你可能会犹豫不决,想要画出这些道德标准,但我们无法避免谈话。所以不要等待。现在开始讨论,以便您可以确定边界,如何执行它们,甚至在必要时如何更改它们。 以上由AI翻译完成,仅供参考! 来源:https://www.sas.com/en_us/insights/articles/analytics/artificial-intelligence-ethics.html  
    AI
    2018年04月27日
  • AI
    人工智能重塑未来劳动力 By Tracy Wang 埃森哲咨询大中华区管理咨询总监 在4月20日的中国人力资源科技论坛年度论坛上,Tracy Wang女士发表了题为“人工智能重塑未来劳动力”的主题演讲,分享了埃森哲公司的最新报告,向大家展现了人工智能将如何改变未来劳动力。以下是Tracy Wang女士在本次论坛的发言内容: 大家好,我是Tracy,非常高兴今天有这个机会站在这里。我主要想和大家分享一下埃森哲公司发布的最新调查报告,报告的名字叫做“人工智能重塑未来劳动力”。这份报告包含了今年一月份埃森哲公司在瑞士的达沃斯世界论坛上发布的最新调查研究,其中应用了一些经济学的模型,预测了未来AI为企业带来的一些经济效益,并且强调了AI是如何重塑未来劳动力的。 说到这儿,其实有一个小插曲,因为我们的研究是全球性的,所以调查报告本来只有英文版。但在座的大家都是中国人,我过来分享肯定得用中文版的材料。市场部的同事和我说,自己翻译太浪费时间了,如果交给我们的翻译人员翻译成中文,大概一周的时间就可以好。我想一周的时间肯定是来不及了,我还是自己翻吧。于是我就打开了谷歌翻译,花了一两个小时就翻好了,结果我发现谷歌翻译的精准度基本达到了90%以上,剩下的一些语法错误,只需要我再稍微做一些语言润色。 这个事情说明什么,在翻译这个领域,AI已经颠覆了很多从业人员的职业生涯,很多人已经面临失业或者说转型的风险。 回归到今天的主题,当人工智能重塑未来劳动力的时候,你准备好应对竞争了吗?这个问题留给大家在今天的演讲过程中思考。AI现在这么火,大多数的企业在人工智能大致处于什么样的阶段呢? 其实一般来说,企业在采用新技术的时候,大致分为三个阶段: 第一个就是教育和学习阶段; 第二个阶段就是建模和实验阶段; 第三个阶段才是大规模应用的阶段。 埃森哲的观点是,现在大多数企业实际上还是处于第二个阶段,就是建模阶段和实验阶段。他们在业务的某些领域,可以说已经成功实施了AI技术或者说人工智能技术,并且把它们用于提高生产效能,但是当他们需要更高的增长率的时候,他们必须以更加创新的方式应用人工智能。人机协作在这个时候就扮演着非常重要的角色,人机协作就是人和智能机器以不同的方式协同工作,发挥各自的优势。 很多情况下,AI可以代替人力,从事过去人们需要做的一些烦琐工作,节省大家的时间,让人们可以在更高价值的工作上花更多的时间。以客户服务为例,AI的价值在于能够理解并且迅速响应大量的客户请求。AI可以自动处理一些低级别的事件,把高级别的事件交给人类处理,人类就可以花多一点的时间在高优先级的事情上面,更好的改善客户关系。 还有另外一个模式,人和人工智能可以在某些生产流程中进行无缝衔接,比如说宝马工厂首创的协同机器人模式,把人和人工智能在工业生产过程当中,一步一步交织在一起,第一步是机器人完成,第二步第三步交给人类来完成,这个过程当中实现了生产效率的提升。 另外一个例子就是设计领域。现在出现了很多新的设计软件,可以通过机器学习的方式可以自动生成设计理念,设计专业人员通过调整或者不断地设置设计参数来优化算法,从而完成一些更加优美的设计,更加符合人类的审美观。 我们为什么觉得人机协作可以产生更大的效果或者说价值?以AI医疗为例,经过我们的研究发现:在哈佛的病理学家,他们利用AI的技术能够更精准预测乳腺癌的细胞。不能说预测,是识别,基于图象识别的原理。他们发现AI识别的精准率达到了92%,但是人类病理学家的精准率超过了机器,达到了96%的精准率。但令人惊喜的是,如果把人类病理学家和机器AI结合在一起工作,最后得出来的精准率达到了99.5%,可见人机协作的结果超过了单独任何一方的结果。 总体来说,如果大多数企业在AI方面的投入,或者说人机协作方面的投入,能够达到世界领先水平的话,将会在未来五年增加38%的收入,而且就业率会提高大约10%。现在越来越多的企业认识到AI的价值,并且投资AI领域。 世界经济论坛和埃森哲的另一份独立研究报告指出,实际上过去的一年里,也就是2017年,企业在AI领域的投资增长了59.1%,这个数字是比较惊人的。根据我们的这份研究,有69%的企业领导人相信他们的行业将会被AI所颠覆,72%的企业领导人认为是否采用AI在竞争中能否能够脱颖而出至关重要。74%的高管认为,他们的公司将会在未来三年内,很大程度上实现任务和流程的自动化,97%的人认为他们会用AI来提升工作人员的工作效率。 现在大多数企业还是利用AI实现自动化,来提升企业效率,但是我们发现我们的观点就是说人机协作是带来更高增长的一个关键因素。报告指出,54%的领导人认为,人机协作对于实现其战略重点至关重要。61%的企业领导人预计在未来三年需要和AI合作的岗位比例将有所增加。 埃森哲的经济模型相当于是预测了AI对于企业带来的一些经济效益,跨行业来讲,刚才说到的这个数据,因为AI的投入会增加大约38%的收入,增加10%的就业率。从行业的角度讲,对于零售行业、销售品行业冲击是最大的。应用了AI技术后,这两个行业的收入增长到了51%,其次就是医疗和电信行业,分别是49%、46%。这是这些行业的就业率数据,红色的这些数据,大家可以看到,AI不但没有降低就业率,相反在各个行业都有所提升,这其实就是因为很多工作将会面临转型,而且一些新的工作需求,或者说对个人技能需求的提升。 报告指出,46%的高管说,随着机器承担例行任务,传统的工作会过时,人们会转向基于项目制的工作。所有的领导人几乎都表示说他们已经在一定程度上重新设置了公司的工作。29%的人表示,他们已经对公司的工作做出了大量的改变,工作的重新设计和改变也是惊人的。AI最大的任务就是重新设计工作,原来一些操作性的岗位会被AI替代,人类会集中在洞察性的岗位。而传统的技术型的岗位,也会被创新型的岗位所替代。 这就是一些简单的例子,经过我们的调查研究,采访了很多AI技术相关行业的从业者,他们向我们讲述了一些故事,他们的工作是怎样被AI所影响的,比如说钻井技术员,以前他们需要钻多个测试口,知道石油在哪,然后手动去准备钻头,输入正确的压力和钻头的速度。现在AI可以直接告诉人员石油的沉积,并且可以自动计算速度压力和深度。 药剂学科学家也是这样的。以前他们要梳理大量文件,以评估与药物有关的安全问题。现在AI可以自动评估风险系数,这样的话药剂学科学家可以花很多的时间在高风险的病例工作。 同理还有软件开发者,他们每周花费时间来识别新的垃圾邮件标志,并且编写垃圾邮件检测规则。现在AI可以自动识别垃圾邮件的检测规则,并且能够自动更新检测规则。这样的话,软件开发者实际上就可以花更多的时间在新的软件开发上。 航天工程师也是一样的,原来他们自己手动设计飞机组件,寻找抗压性更好、更加轻便的设计。现在AI采用生成性设计模仿大自然的进化方式,考虑数百万种可能的设计,挑选出抗压性更好,更轻便的设计。还有长途运输驾驶员,自动驾驶的出现使得驾驶员更多从事监控和优化路线方面的工作。 我们通过调查发现,非常多的员工已经迫不及待和人工智能合作。67%的员工表示,在未来的三到五年,去发展他们与AI合作的技能是非常重要的。62%的员工表示,智能技术会对他们的工作产生影响。45%的员工相信,AI会帮助他们更有效地去完成他们的工作。 但是与此同时,其实企业雇主对于这一结果可能会产生一些偏差。实际上员工对于AI的拥抱程度,可能已经超出了企业的预期。根据我们的调查发现,实际上四分之一的高管都会认为他们的公司员工实际上对AI有抵触情绪,比如可能担心工作丢失等等,员工的抵触情绪是AI在应用的一大阻碍。而只有3%的高管计划在未来的三年内,大幅增加对员工AI技能相关的一些提升,其余的97%的高管在预算上基本是持平的,或者说稍微有一些增长。 顺应人机协作或者说AI的趋势,作为企业的领导者,最重要的三个工作是什么呢? 第一个是重新定义工作; 第二个是引导员工向新的价值领域方向迁移,比如从员工思维和能力上引导; 第三是培养新技能,一会儿我会阐述哪些是未来会出现的新技能。 刚才我讲了很多工作是怎么被重新设计的,这个过程里面,创建新的岗位说明,Job Design是非常重要的,把人力从原来的职能岗位上释放出来,让企业组建基于项目制的工作方式。引导员工向开启新价值形式的领域迁移这个过程中,打造敏捷组织是非常重要的。 敏捷组织有什么特点? 第一个是流程非常灵活。第二个特点是扁平化管理,组建小规模的团队。第三个是顺应AI的管理趋势,即有灵活的组织模式来支持项目制团队,团队能够迅速组建和解散。 关于培养员工的新技能,埃森哲发现有几个角色在人机协作的过程当中会逐渐展现出来,比如说教练的角色、解释者的角色、维护者。 什么是教练呢?教练就是训练AI的人,不一定是写代码或者说编写算法的人,但是他必须懂算法,这样可以帮助AI更好的学习,更好的帮助AI识别人的面部特征,或者通过正式的工作流程的方式帮助AI进行学习,要么帮助AI融入团队和团队一起进行学习,所以说训练AI的能力是非常重要的。 第二个讲到解释者,解释者也不一定是写代码的人,但他也得懂算法。把算法结果解释给大家听,并不是每个人都懂算法,通过解释的过程,可以增强大家对角色的信心,从而增加员工和客户对于算法的信心和支持。 第三个就是维护者,维护者是什么意思呢?维护者就是保证AI在演化的过程中不能跨越人类的道德底线,或者说不加强人类的一些偏见。比如说现在有一些图片识别软件,基于机器学习的算法,很多时候是通过学习大量的图片,给图片打上标签的方式进行工作的。这里前段时间出现一些情况,比如说很多黑人图片被人工智能打上猩猩的标签,这显然会涉及种族歧视,这时候需要维护者站出来指出风险,并且优化算法,来保证不涉及到道德方面的或者说法律方面的一些风险,这几个角色在AI或者说人机协作的过程中将来演化出来的一些新的角色。 同时有一些新的能力很重要,比如说判断力,有些时候AI不可能完全替代人类做决策,当AI不能做决策和判断的时候,人类就需要去做决策,这就需要人类能够了解AI的一些局限性,知道什么时候,在什么情况下应该怎么去干预AI决策。还有包括刚才讲的训练AI的能力很重要,创建工作流程,帮助AI大量的处理数据,优化算法,更好的为人类做洞察。 还有比如说询问智能系统,首先你要懂这个算法,要懂这个系统是怎么分类这些信息的,所以你在在询问这些智能系统的时候,才能获得更有价值更有洞察力的信息。所以经过我们的研究发现,这是我们未来需要的一些新的工作技能。作为企业来讲,首先需要对这些技能优先性进行排序,然后确定目标,对企业的员工进行培训,这里面可以用到一些数字化的培训方式,比如说VR、AR来加速培训的规模和速度。 后面有一些AI应用在工业场合的一些例子,比如万豪国际酒店,它的商业模式就是采用新技术推动的模式,利用机器人欢迎客人,把物品毛巾送到客人房间,也推出了一些智能推荐系统,可以让客人产生更多的订单,并且它的AI聊天机器人,可以让顾客能够在Facebook聊天软件上自动生成订单,帮助客人节省旅行社产生的一些费用。在比利时酒店会有一个驻场的聊天机器人,会说十九种语言,帮客人做自动登记。 下一个例子就是StitchFix,这个品牌利用了AI技术,在线上服装零售领域脱颖而出。和传统销售不一样的是,他们的服装设计师,根据客户的订单和退货订单,分析客户喜好,帮助公司设计师为顾客提供更好的、定制化的服装样式。 第三个例子就是阿迪达斯的SPEEDFACTORY,这是基于本地化的理念,非常小而新的举措,目的是满足更多定制化的需求,利用了人和AI相互协作的生产流程,设计师和AI相互协作,一双定制鞋从设计到生产几天内就可以完成。这样的话把价值定位转移到了满足消费者的定制需求上,大大节省了工作效率。 最后我分享一下中国市场的数据,前面讲的是全球化的一些洞察和数据,接下来我把单独的中国市场数据拿出来,大家看看和其他国家相比,有没有一些新的发现。在调查里面,我们问到三个问题。 第一个问题是你所在的组织在未来三年内,自动化的任务和流程程度是什么样的。你会发现,74%的被采访者都会回答这个比例是高或者非常高的,但中国实际上是低于平均线的,只有56%。 第二个问题是你需要在多大程度上和智能机器一起工作,中国的平均数据是38%,大多数人都会说会花26%到50%的时间与机器进行协作。 第三个问题,你更同意下列哪个陈述,一个是智能技术将在未来三年内减少规模,另一个是AI将在未来三年为公司带来就业机会的增长。大家可以发现中国实际上在悲观的情绪上是排名第二的,大家可以思考一下背后的原因是什么。   今天我的分享就到这里,非常感谢大家,感谢主办方HRTech China的邀请!   欢迎关注HRTech China微信公众账号,回复420可获取演讲嘉宾的分享资料; 欢迎点击链接,了解420中国人力资源科技年度论坛的报道
    AI
    2018年04月26日
  • AI
    AI 强势入侵人力招聘,还需要解决什么难题 文 | 颜璇 来源 | 智能相对论(ID:aixdlun) 金三银四,求职者们纷涌而来,各家企业的人才战役也已经打响。历经了简历初筛、笔试、面试、复试等一系列流程,求职者“不堪折磨”,想必HR们也累得够呛。在人力资源招聘上运用一些科技手段已经不是新鲜事儿了,最常见的比如在简历初筛这一环节中设置关键词,让机器自动剔除掉不符合条件的简历等。 近日,AI 招聘初创公司 Fetcher获得种子投资的新闻又把大家的视线拉回了AI招聘上,此次投资,该公司总计获得了250万美元的种子轮融资。而就在上个月,ATA(全美在线)也与中国演出行业协会达成了战略合作,为演出行业人才评价和人才队伍建设提供技术和服务。 AI强势入侵人力资源招聘领域,对HR和求职者们会是一个好消息吗? 一、AI招聘可以成为人类的好帮手 就智能相对论(ID:aixdlun)行业分析师颜璇来看,AI+招聘并非想要挑战人类HR的“权威”,反而会在以下两个方面成为HR和求职者们的好帮手。 1.AI提高效率,从而提高准确率 对于HR来说,最为重要的就是要招到对的人。而如何招到企业想要的人才,一方面,这取决于HR“识人”的水准,另一方面,则看面试的轮数,也就是考验程度。一般来说,高水平的面试官再加上多轮面试,往往会提高这次招聘的准确率。但多轮面试所提升的准确率,却是以牺牲工作效率为代价的。 一般来说,一个大型企业的招聘周期往往比较长,从网申到最后录用可能要一个月之久。究其根本,还是企业在关卡考核上花费了太多时间,不仅使得招聘周期长,还极容易流失那些在漫长的等待中而躁动不安的人才。 图为某企业招聘流程 AI依赖于其强大的计算能力和大数据,能够进行自动化的人才甄选,包括自动化笔试、面试以及基于聊天机器人的甄选工具,这试图解决的正是人才甄选的效率问题。 如此,AI能够成倍地减少企业搜寻人才的时间,面试的效率将会得到大幅提升,使得HR们能用更多的精力取找到“对的人”。而这次融资的创业公司Fetcher也声称,相比内部 HR 招聘,AI 将节省 10 倍资源,相比猎头等招聘机构,将节省近 20 倍成本。 2.双向互动,盘活人才市场 我们看目前的招聘形态,对于大多数求职者而言,还是比较倾向在招聘网站搜索相关信息。因为这类网站的运作模式比较简单,就是将大量的企业招聘信息分门别类,然后罗列在网站上供求职者们搜索。但你会发现,这类网站是缺乏互动的,即使像BOSS直聘这样,职场BOSS虽然可以与求职者直接交流,但这也不是真正意义上的平等互动。本质上,这还是属于“求”职软件,平台会向供职者倾斜。 所以,企业在这些网站上并不能找到特别好的新形态公司的人才。那么,AI在其中可以起到什么作用呢? 曾经,罗永浩在社交平台上发布了一篇煽情的帖子,凭借本人的IP效应招到了大量的人。这类社会化招聘或许可以让劳资双方走得很近,但一篇帖子,一个朋友圈或者是一条微博的力量还是太微薄了。 这就给了我们一个思路——AI招聘或许会是社会化招聘的高阶版。社会化招聘的本质是通过社交关系的互推来获得职位机会,社交里的关系链都会对这个人作出相对真实的评价,好比入职前,HR会联系求职者就职过的公司里的同事,打探这个人之前的口碑。而AI介入后,HR可能就不用那么麻烦了。 基于社交网络的构建、UGC内容的产出、以及ChatBot和匹配算法的开发,我们或许可以通过人工智能激活被动的求职者,AI可以作为猎头,影响并转化被动求职者这一群体,而这也意味着,劳资双方的信息可以平等交换。 被招聘的人可以通过AI打造的社交平台清楚地了解企业信息,而求职者的社交信息、内容产出也会变成一份个人档案,企业可以更加立体、真实和动态地了解求职者的特长和兴趣。 二、AI招聘还有哪些难题要过 即便AI招聘对于企业和求职者来说算是一个好消息,但是,人们也不能高兴得太早,凡事有利有弊,在看到好处的同时,我们也要观察到它需要改进的一面。 1.以子之矛攻子之盾,AI试不出真人才 根据50个省市政府所属人才服务机构数据统计,2012年以来大中城市人才供求比在2:1左右,即求职总人数约为提供岗位数量的2倍。而根据智联招聘统计,2014-2015年全国人才供需指数维持在30以上,即平均一个职位收到简历数量均在30份以上。我国在快速发展的进程中,就业市场竞争加剧趋势十分显著。 图源:中国产业信息网 就业竞争激烈,企业人才短缺,职业教育培训有着巨大的需求潜力与市场空间。根据百度及搜狗搜索数据,2014年,职业教育培训的关注度在各细分教育子类中名列前茅。 今年的公务员考试热潮刚刚冷却,但了解的人也知道,此类公务员的笔试、面试的报班培训的成本只高不低。如果AI成了面试官,求职者们“上有政策,下有对策”,会去寻求更佳的面试培训,而有市场就有需求,以大数据为优势的AI面试恐怕也会被AI+培训所攻破。 智能HR的客观评分机制反而成了清晰可见的“套路”,然后被智能培训老师“反套路”,两者”斗智斗勇“,倒显得掺杂在中间的求职者像一枚棋子,毫无自主意识,如此选拔出来的人会是真正的人才吗? 而人类HR的优点正是在于其自主性,相信上过培训课的同学们都知道,培训老师都会强调面试时不要准备模板,因为模板会造成同质化,面试官因为长期积累的经验通常能敏锐地察觉到模板的痕迹,从而影响面试者的成绩。 2.“算法弥补偏见”不可信 Fetcher曾表示,产品的筛选机制将消除任何潜在的人类偏见,使其完成符合平等就业机会委员会的规定,年龄、性别、种族、宗教、残疾等都不会成为算法的参考标准。也就是说,算法可以弥补招聘中的偏见。 这类论调不禁让人想起了张一鸣的”算法没有价值观“。前几日,一名被银行拟录取的面试者,却在准备入职时被智能检测平台Say No,究竟是可能出错的“人工智能”掌握了否决权,还是丁是丁卯是卯的“人工智能”为某些人为标签背了黑锅? 现实生活中,招聘求职者可能会存在很多文本之外的“潜规则“,比如招聘信息上的“某某条件优先”或许只是某些企业灵活运用的话术而已。算法本身是客观的,但因为其需要人工标签,掌握这个算法的人群才是招聘中的关键。盖上“算法”的面纱,那些成见反而更加若隐若现。 3.逃不过的数据难关 数据一直是AI的大难题。但在面对AI招聘时,数据的模型化显得十分困难,即使打造出模型,普适性也难以预见。 目前的AI匹配技术仅仅能在少数一些职位上达成足够高的可用性,比如说卡车司机,因为卡车司机在美国是一个庞大群体,且其能力和要求较容易被模型化。 当一家公司运用这个系统来面试求职者时,无限的机器学习过程或许可以筛选出一个优秀的销售人才,但这种筛选算法也无法在不经过新的训练过程的情况下,简单地推广到其他职位,比如人力,市场等岗位。而这仅仅是一家公司里存在不同岗位所要面对的问题。 如果不同的公司来使用这套系统,AI的数据需要更加垂直化。但问题是,某个领域的某家公司真的有这么多的人才数据可以提供给机器来学习吗? AI+确实能成为一个工种的助力,但并不能解决一切问题。各家企业应该明白,围绕人才招聘,企业想要得到真正的人才,绝不能仅仅依靠人工智能这一技术领域的创新。真正的突破点在于,企业将自身建设的越强,对优质人才的吸引力才会越强。 【完】 智能相对论(微信id:aixdlun):深挖人工智能这口井,评出咸淡,讲出黑白,道出vb深浅。重点关注领域:AI+医疗、机器人、智能驾驶、AI+硬件、物联网、AI+金融、AI+安全、AR/VR、开发者以及背后的芯片、算法、人机交互等。
    AI
    2018年04月25日
  • AI
    简寻获数千万元A 轮融资,以工程思维切入“AI+招聘”赛道 简寻宣布完成数千万元人民币A 轮融资,由远望资本领投,下面是其投资人的描述为什么投资简寻。   大家好!我是迅雷创始人程浩,现在成立远望资本,聚焦人工智能领域投资。我们基金刚刚投资了「简寻」,「简寻」是一家聚焦在AI招聘和猎头服务的公司。在这里和大家分享一下我对这个领域的投资逻辑: 猎头是个非常大的行业,每年的市场规模超过1000亿,但同时又是个一个极度分散的行业,最大的几家的年销售额也就是10亿上下,不足整个市场的1%。核心原因就是这个行业的标准化程度太低,过于依赖于猎头顾问。 这带来两个问题,一是低毛利:为了留住猎头,猎头公司不得不提供很高的销售激励。二是没法规模化:优秀的猎头顾问一旦掌握了客户和人才资源,就会自立门户,导致这个行业出现了很多小作坊。 「简寻」通过技术手段把这个流程标准化,降低对人的依赖,只有这样才能规模化,业务才有高毛利。当然事情听起来并不复杂,但实际上技术实现非常复杂。这涉及到自然语言处理(NLP)、知识图谱(KG),未来可能还有语音识别相关(ASR),这些都是不小的挑战。简寻过去两年在这块确实做了不错的积累,目前已经和阿里、搜狐等KA客户达成了合作,并实现了盈利。 「简寻」团队和大部分做招聘业务的同行不同的地方在于他们是技术驱动,何斌大学期间曾参加国际大学生超级计算机大赛获得HPL冠军并打破该比赛世界纪录,同时还是连续创业者,有非常好的商业sense,而且领导力很强。联合创始人屈澄有多年的招聘和猎头行业经验。 最后,行业内如果有朋友有招聘需求,欢迎来骚扰!最好是B轮以后的公司,哈哈! 亿欧记者宋少卿   2018 年4 月23 日,智能招聘方案提供商简寻宣布完成数千万元人民币A 轮融资,由远望资本领投。据创始人何斌透露,目前公司已实现盈利。 简寻核心业务是人工智能(AI)+招聘,基于自然语言处理、知识图谱等技术,为企业提供智能的招聘解决方案,包括人才寻访服务和人才大数据服务。创始人何斌毕业于华中科技大学,曾参加国际大学生超级计算机大赛获得HPL 冠军并打破该比赛世界纪录,也曾参与极验验证的早期创建,是典型的技术极客。在创始人背景的影响下,简寻选择了一条颇具工程师思维的赛道:用技术手段解决招聘中的效率问题。 那么,招聘中哪些环节是可以作为一项工程问题去解决呢? 第一、盘活企业内部数据 对于中后期的公司来说,简历库是一个价值没有被完全挖掘的金矿。例如搜狐、阿里巴巴这类职场人士趋之若鹜的中后期互联网公司,每年都能受到大量简历,所积累的历史简历数量少则几万,多则几十万上百万。而且,其中很大一部分是未被录用的应聘者,这些应聘者中有一部分人在其他互联网公司成长为中流砥柱,并可能出现跳槽需求。企业倘若利用好这些历史简历,可以为自身带来优秀的人才。但是,其中的问题是如何对简历信息进行更新。 简寻有数这款产品,便是帮助企业把积累的历史简历数据进行智能更新,简寻技术人员一方面利用企业内部数据,一方面通过全网开放数据或者跟猎头公司合作获取数据,经过算法完成资料匹配后,便可进行后续的人才激活。此外,简寻有数还提供员工留存、大数据人才地图等智能招聘产品,帮企业内部HR 更好地降低离职率、更有效地利用内部数据、更有的放矢地出击,降低20-30%的招聘成本。 第二、建立被动人才数据库 简寻有数是把AI 的能力赋能给企业HR,而简寻优猎则可以理解为简寻自营的一套猎头服务体系。当企业无法依靠内部招聘力量、自有人才数据和招聘工具完成招聘需求时,简寻可提供这种“猎头+技术”的方式弥补纯工具的不足,形成服务的闭环。 何斌表示,在传统的招聘市场,最优质的人才很少主动更新简历,并且国内也没有一个类似LinkedIn 的覆盖率很高的职业社交网站。因此,简寻构建了一个巨大的被动人才数据仓库,以AI 相关技术提高猎头寻访效率。 以程序员招聘为例,简寻通过收集和抓取Github、论文、博客等近20 个开放数据源,经过数据清洗、数据整合、数据分析最终构建被动求职者人才职业数据仓库,列出该人才在各平台的贡献,以此作为能力评估的参考。   第三、建立标准化寻访流程 对于猎头来说,通过AI 的标准化和流程化,接触候选人变得更精准,更高效,在3 天内即可完成第一次推荐,大部分职位的关闭时间缩短30%以上。如果从收入结果来看,技术赋能让猎头的人均单产相之前提升了2-3 倍。 除了程序员,简寻目前也开始做其他职业的多维度评估,更多的是侧重技能型职位。“如果从编程语言、工作岗位区分,程序员可以细分为几十个种类。事实上,各个职业都可以在一定程度上标准化,比如产品经理可以偏用户交互、也可以偏功能层面,当把职位做非常详细的拆分、把企业对候选人的要求做更多维度的拆分,大部分职位都是可以在一定程度标准化”。 何斌介绍,目前简寻在一些职位上已经达到初级Recruiter 的筛选效果。为辅助算法层面快速落地,简寻构建了高性能分布式爬虫系统、非标准化数据解析系统以及大数据分析系统等基础设施。经过深入的市场对接和技术积累,简寻目前在人才数据处理和人岗匹配算法等层面建立了深厚的壁垒。   远望资本创始合伙人程浩,在谈及投资逻辑时表示:“猎头是一个传统且比较低效的行业,简寻通过人工智能和大数据将这一流程标准化,从而大幅提高招聘效率,自身也做到规模化发展。这是一个典型的“行业+AI”的落地场景。简寻和其他提供招聘服务的同行最大的区别就是他们非常技术驱动,同时也有很好的行业背景。CEO 何斌作为技术创业者,有很强的商业sense 和领导力”。   简寻目前服务了包括搜狐、阿里巴巴、掌阅、猎豹、智融集团等近百家中后期互联网公司。团队目前近50 人。本轮融资完成后,公司会加大对研发的投入,同时提高对客户的交付能力,为企业提供更优质的智能招聘解决方案。
    AI
    2018年04月24日
  • AI
    人才招聘AI巨头入场:Google前搜索专家成立Eightfold.ai公司,获得超过80多个专利,2400多万美金的投资   Google前搜索专家Ashutosh Garg,联合Facebook新闻推送团队的Varun Kacholia,共同成立Eightfold.ai公司,致力于融合检索与人工智能技术,变革人力资源行业。团队声称拥有80多个专利,已获得Lightspeed Ventures和Foundation Capital超过2400万美金的投资。 Eightfold (fka VolkScience)是行业的第一个人才智能平台,为企业建立,以整体的方式处理人才的获取和管理。 平台上有三大支柱: *首先,我们相信人是每个企业最大的资产,我们想把他们放在中心。 我们将企业内所有人的数据(从申请人到校友)聚集在一起,这些数据目前被广泛应用于许多不同的解决方案中。这成为每个企业最丰富、最全面的人才网络。 第二,我们使用数据来提供人们能够做什么,而不是他们过去做过什么。这使得企业能够更有效地将人们与合适的机会匹配起来。 最后,利用AI平台不断从企业和个人的表现中学习,预测未来的角色、表现和职业选择。 Eightfold.ai已经拥有超过100名客户在不同行业中使用其工具。 据一份声明称,其软件迄今处理了超过2000万个应用程序,其客户响应率比行业平均水平提高了700%,同时将筛选成本和时间减少了90%。       Eightfold (fka VolkScience) is industry’s first Talent Intelligence Platform, built for enterprises, to address Talent Acquisition and Management in a holistic fashion. Platform is built with three pillars in mind:  * First, we believe that people are every enterprise’s greatest asset, and we want to put them at the center. We aggregate all people data within an enterprise - from applicants to alumni - which is currently siloed across many different point solutions. This becomes the richest & most comprehensive Talent Network for each enterprise. * Second, we use data to provide intelligence on what people are capable of doing instead of just what they have done in the past. This allows enterprises to more effectively match people to the right opportunities. * Finally, using AI the platform continuously learns from enterprise and individual performance to predict future roles, performance and career alternatives.
    AI
    2018年04月18日