CEO和COO在HR Reporting方面的10个主要期望因为作者长期专注于帮助HR利用他们的人力资源数据提供更好的业务成果,阐述了作者认为CEO和COO在人力资源数据报告方面的10个关键期望。
首席执行官和首席运营官对人力资源报告的10个期望值
了解脉搏--对公司组织和员工健康状况的顶线指标(人员不足、人员过剩、参与度、周转率等)要有信心和可信度。
了解你的东西--虽然HR的运营指标(关于:薪资、招聘、薪酬与福利等)必须作为HR日常工作的一部分进行量化、跟踪和优化--但不要指望其他人总是感兴趣,除非他们在特定时间受到影响。HR只需要在做好这些基本工作的同时,做到可信、可信赖。
要公正--从不偏不倚的事实开始,发掘优势和机会两个领域。然后转入了解重要话题的背景或潜在条件。
有证据--专注于阐明或揭穿CEO所面临的业务问题(包括战略和运营)中的人的方面,如人才管道、生产力、人员流动、薪酬等。
实事求是--确定切实可行的、可负担的、以投资回报率为导向的方案,以打造优秀的团队,提高生产力,执行业务计划。
保护公司风险--利用人力资源数据了解并降低基于人的风险(如未达到招聘目标的影响、准确预测招聘需求等)。
真正的合作伙伴--不要只是发现问题,要先发制人,合作制定解决方案,并衡量影响和进展。
在相关的地方要有洞察力--不要对那些与战略或运营无关的事情提供洞察力--要深入研究并提供可信的、以数据为驱动的故事情节,在任何特定的时间点上都是重要的。
优化员工终身价值--利用您的数据做出更明智的招聘决策,并留住关键绩效人员。了解您的最佳招聘来源在哪里,如何以最佳方式让他们达到预期的生产力,谁创造了差异化的价值,以及如何以最佳方式长期保留他们。
识别创造价值的机会--使用人力资源数据来降低风险,削减成本,并加速和直接促进公司的P&L。
Know The Pulse - be confident and credible with the topline company metrics on organizational and employee health (understaffed, overstaffed, engaged, turning over, etc).
Know Your Stuff - while HR operational metrics (re: payroll, recruitment, comp & bens, etc.) must be quantified, tracked and optimized as part of HR’s day-to-day - don’t expect others to be always interested unless they are impacted at a given time. HR just needs to be credible and trusted in getting these basics right.
Be Impartial - start with unbiased facts and uncover both areas of strength and opportunity. Then move into understanding context or underlying conditions in topics that matter.
Have Proof - focus on articulating or debunking the people side of business issues (both strategic and operational) that the CEO is facing such as talent pipeline, productivity, turnover, compensation, etc.
Be Practical - identify practical, affordable and ROI-driven programs to build great teams, drive productivity and execute the business plan.
Protect Company Risk - use HR data to understand and mitigate people-based risk (like the impact of not hitting hiring targets, accurately forecasting hiring needs, etc.).
Truly Partner - don’t just identify problems, be preemptive, collaborate on working on solutions and measure impact and progress.
Be Insightful Where Relevant - don’t provide insight into things which aren’t of strategic or operational relevance - drill down and deliver credible, data-driven storylines in the things which matter at any given point in time.
Optimize Employee Lifetime Value - use your data to make smarter hiring decisions and retain key performers. Understand where your best sources of hires are, how to best onboard them to expected productivity, who creates differentiated value and how to best retain them for the long-run.
Identify Value Creating Opportunities - use HR data to reduce risk, trim costs, and to accelerate & directly contribute to company P&L.
PeopleInsight
2020年07月11日
PeopleInsight
再谈什么是人力资本分析 What is people analytics?
What is people analytics?
PeopleInsight联合创始人兼CEO John Pensom一直将人力资本分析定义为:
使用人的数据和业务成果数据来做出更明智的人员和业务决策。
我们把这个定义分为3个部分。
首先,人员数据可能来自以下任何或全部。
其次,经营成果数据也会来自于多种形式,比如。
第三,这种人与企业成果数据的结合,必须应用并持续用于企业的决策。
人力资本分析将帮助企业:
·做出更明智的用人决策
·识别和留住关键人才和
·提高投资回报率,投资于最有影响力的人力资源和人才项目。
人力资本分析、人力资源分析、人才分析或劳动力分析?People analytics, HR analytics, talent analytics or workforce analytics?
人力资本分析过去和现在有时都被称为人力资源分析、人才分析或劳动力分析。
直到2014年左右,这些不同的术语在某种程度上是可以互换的--被早期的厂商用来试图标记空间和命名这个领域。就在这个时候,行业分析师重量级人物、数据驱动型HR的长期支持者Josh Bersin发表了看法,并通俗地将这个空间命名为People analytics。
虽然人事分析类的人力资源技术在2012-2015年期间兴起,数据驱动型HR已经出现了一段时间,但在大多数组织内,拥有人事分析功能还是相当的异类。在这些早期的日子里,当人员分析是人力资源的一部分时,它通常是由具有技术技能和对数据感兴趣的个人作为一种小众(而且往往是一次性的)活动来玩的。人力资本分析正在发展,但它还没有成为一门广泛的学科。
然而,在此期间发生的事情,是一系列影响因素的汇集,使人力资本分析成为人力资源部门的当务之急。
·考虑到人才争夺战,我们在 "人力资源 "上的花费比例很高,而且CEO们也越来越相信并大声疾呼,人是他们最关键的资产,因此,人的数据在组织中开始被认为具有更高的价值。
·人员数据(候选人和员工)的来源正在迅速扩大,由于云端应用被HR买通,这些数据更加容易获取,此外还有更先进的数据管理、集成和API。
·HR技术厂商跳上分析的浪潮,声称自己提供人员分析解决方案。
几乎所有的HR技术厂商都开始宣称自己有人员分析、大数据和预测性,以努力打压估值,搭上营销的浪潮,但造成了巨大的噪音和市场混乱。实际上,他们中的大多数人除了对他们的事务系统产生的数据进行单一维度的报告外,没有任何其他的东西--这与人员分析相去甚远。除了少数几个诉求者之外,所有这些诉求者都是事务性的人力资源系统,因此,没有采用任何人员分析技术中最关键的组成部分之一--人力资源专用数据仓库,用于优化多源人力资源数据的复杂结构。
结果是,HR开始拥有更多的数据和更多的系统--但他们无法超越孤立于事务性系统中的数据的单一维度报告。
这就引出了我们所说的HR的普遍问题。
与人力资本分析相关的普遍问题 The Universal Problem Related to People Analytics
一言以蔽之-数据利用不足和断线Underutilized and Disconnected Data
尽管有大量的数据,但在将数据整合到一起、在不同的系统之间建立联系,并使之具有意义以推动更好的业务成果时,就会出现普遍性问题。
深入了解普遍性问题
·人力资源和人员数据无处不在--很大程度上停留在孤岛上(即你的事务性人力资源技术)。
·不仅是该人力资源技术领域不断扩大新的系统和额外的丰富数据来源,没有真正的计划有一个桥梁跨越这些岛屿 - 或统一数据到一个单一的真相视图。从本质上讲,这些人力资源数据孤岛的差异性和它们所收集的历史数据量正在加速增长。
·这些不同的人力资源数据可以而且应该被用来做出更好的人员和业务决策。
·人们对业务成果中的人的方面以及如何最有效地利用你的人员数据来创造新的价值的理解正在形成,但仍然有限。
·当您结合并连接多个来源时,您的数据的价值就会显著增加,从而使您的数据具有多个维度。
·管理、连接和组合人力资源数据以实现商业智能是极其复杂的,可以说是有点黑科技(如果你不同意这个观点,你有没有做过--用人力资源数据,大规模的持续刷新数据?
·实现将公司最敏感的数据(人员数据)在正确的时间传递给正确的人,同时确保保密性、隐私性和信息安全,不仅真的很复杂,而且从很多角度看绝对是任务关键。这种类型的数据泄露可能会让任何公司沉沦。
·人力资源报告和分析需求传统上被IT团队认为优先级低于其他企业需求。
人力资本分析纯游戏功能
这些挑战往往导致人力资源报告以最简单、单一维度的方式执行,一次又一次地手工创建电子表格。
不用说,基于电子表格的人力资源报告引入了许多风险,包括数据完整性、有限的访问管理控制、有限的数据管理能力,以及从几乎没有治理或内部控制的系统中下载原始数据。
不要误解我的意思,电子表格很适合入门和原型设计,但它们挖掘出来的速度非常快,不应该在企业级人力资源报告和人力资本分析中发挥关键作用。
人力资源指标与人力资本分析的比较 HR Metrics Versus People Analytics
我们必须超越人力资源指标,进入人力资本分析领域。
人力资源指标其实是为HR服务的。人力资本分析是为整个企业服务的。
虽然这一点可能有待讨论,但我们认为HR度量的特点可以是单一维度和简单的关于人力资源实践、流程和交易的测量。
人力资源度量是关于人力资源效率的。这都是好的,但它需要更进一步。
因此,下一个层次,也是与我们的定义一致的,是人员分析--它更多的是关于衡量人力资源、组织和人才实践、流程、项目和交易所产生的结果。
因此,人力资本分析更多的是关于人力资源的有效性--这就引出了一个非常重要的基本原则。
例如,要衡量和了解招聘处理,如填补时间,你可以采用一些简单的人力资源指标。
然而,如果要了解哪些招聘渠道是你的最佳招聘来源,以及优质招聘的成本是多少,你需要将各种来源的数据结合起来,并以人员分析的方式交付。
你需要通过深度细分、算术或统计分析来生成更多与业务相关的见解,并使分析师能够从多个镜头或维度来查看数据(例如,按地点、角色、级别、成本、招聘者、招聘经理、来源、使用的评估工具、评估结果等来显示招聘质量)。
一句话,如果人力资源部门想成为更多的业务伙伴、价值创造者和企业战略的关键推动者,我们必须超越人力资源指标,进入人力资本分析领域。
人力资本分析帮助HR专注于对业务重要的事情
人力资源和人力资源业务伙伴必须使用数据驱动的方法,专注于重要的、与业务相关的事情。数据驱动的人力资源玩法介绍了一种以业务为中心的方法--平衡业务的运营和战略需求。
Operational People Analytics
以数据驱动的方式来处理你应该做的事情。
首先,运营报告和分析应该帮助你提高业务线(LoB)的标准人力资源、人才管理和人员项目活动的效率和效果。这是基础层面。
这应该包括对日常招聘、人员管理、人员流动、流动、学习和发展、薪酬、福利和绩效管理等活动的分析。
这将帮助HR从日常的角度出发,专注于基础而又重要的 "HR的事情",并获得LoB领导、LoB经理和LoB员工的信任--利用数据来报告、改进和优化你的核心人力资源和人才服务或范围。您应该专注于提供高效和有效的人力资源流程和项目。
Strategic People Analytics
注重识别和理解异常值。基于数据驱动的洞察力实施项目和变革。
战略性人力资本分析是关于业务合作--帮助您所服务的业务线与人员方面实现其战略业务目标。
战略报告和分析将帮助人力资源部门专注于LoB所面临的多个业务问题。这些用例是直接从对整个组织和具体的LoB都很重要的方面来驱动的。它们也将直接与LoB的1-3-5年战略--或全公司业务计划的战略里程碑--保持一致。
一个很好的例子是使用人力资本分析来指导数据驱动的方法,以准备和动员一个新的客户支持团队,该团队专注于18个月后上市的新产品。
战略报告和分析是关于你在LoBs需要帮助的事情上帮助他们--特别是在人员方面,并采用数据驱动的方法。
Data-Driven Analytical Projects
专注于识别和理解异常值。基于数据驱动的洞察力实施项目和变革。
第三,分析型项目利用人力资本分析来识别和理解异常值--包括好的和坏的,目标是实施高价值的项目和有意义的变革。
简单而有力的项目例子可能集中在改善关键人员异常高的流失率,改善有经验的员工在头两年异常高的流失率,在面临COVID-19影响时对你的劳动力构成做出决策,或者提高关键绩效人员在育儿初期的保留率。
分析性项目都是关于使用数据驱动的方法来解决值得解决的问题。
请记住,要想将这些用例中的任何一个用例视为人力资本分析,您需要将人员和业务成果数据结合起来,以优化效率和效果。
PeopleInsight
2020年07月07日
PeopleInsight
执行您的人力资本分析项目--8个步骤即可完成在这篇博客中,我们看看我们的8步计划,一旦你确定了你的第一个人力资源分析项目--那个多汁的商业机会,就可以开始了。 遵循这些步骤,你将确保通过你的分析和报告提供商业价值。
以下是这些步骤的概述。
阅读并理解您的业务计划
确定DDHR(数据驱动的人力资源)项目的范围。
定义您的主要指标
定义您的二级指标和支持指标
阐明 "是什么"。
阐明 "什么 "背后的 "为什么"。
推动决策、变革案例、目标和变革计划。
实施、衡量成功、稳定和实现价值。
Read and understand your business plans
Scope out your DDHR (data-driven HR) project
Define your primary metric
Define your secondary and supporting metrics
Articulate the ‘What’
Articulate the ‘Why’ behind the ‘What’
Drive Decisions, Case for Change, Targets and Change Plans
Implement, Measure Success, Stabilize and Realize Value
1)阅读并理解你的商业计划书 Read and understand your business plans
这可能看起来很明显......但是......你读过你最新的企业商业计划或目标吗?如果你无法获得它或没有它,你是否已经采访了你的执行团队成员以了解整体方向?
如果你没有,你将如何建立人员和组织能力?
HR成为数据驱动型,是为了更好地实现你的定性和定量数据(即直觉和硬事实)的平衡。 这种平衡的方法需要在与组织相关的、多汁的、有意义的事情的背景下应用--无论是你所服务的特定业务线(LoB),还是更大的企业目标。
人力资源部门必须了解公司和业务部门计划,了解这对人员计划和能力的意义,必须确定、确定范围和交付数据驱动的人力资源项目,这将帮助你实现这些业务计划的结果。
2)确定你所选择的DDHR(数据驱动型HR)项目的范围。Scope out your DDHR (data-driven HR) project
你的范围界定工作应该包括这些活动。
阅读您的企业商业计划书
阅读您的业务线单位计划(直接客户的计划)。
向管理团队/办公室讨论并 "回放 "你的关键观察,以确保你已经建立了足够的理解。
确保并阐明你的第一个DDHR项目如何支持客户的关键重点领域(这些目标可以是公司目标、LOB目标,或两者的结合)。
对于您的第一个DDHR项目,尽您的能力研究、集思广益并记录以下内容。
与项目有关的具体目标、成果和指标。
实现这一目标的人员和组织要求/能力。
当涉及到人力资源和人员项目的所有方面时,你的差距(例如,如果你需要 "提高我们销售团队的成交率",而你没有最佳实践销售成交培训课程,那么这将被认为是一个 "差距")。
不消除这一差距的风险、影响和商业影响。
向你的LoB领导/管理团队简要介绍你从上述活动中发现的情况--获得对你的项目更深入的理解、调整和支持。 如果您做对了,您应该已经提高了客户的热情和兴趣。
现在,您已经围绕您的ONE数据驱动的人力资源项目设定了一些界限,并与您的组织或LoB对应方更详细地了解了它--您现在必须更详细地定义项目--并执行。这其中有几个步骤--这些步骤可以挖掘你要捕捉的数据和指标。
3)定义你的主要指标 Define your primary metric
你需要定义一些我们称之为 "主要指标 "的东西,它能抓住你的项目所要完成的本质。在定义主要指标时,建议尽可能的具体和详细--因为这是所有后续步骤的基础。
然而,你可以决定,在这个时候,保持这个方向性的性质(即减少或增加),而不是进入具体的目标。这都是好事。 目标可以在后续阶段,当你能获得硬数据时,再进行估算/设定。
下面是一个例子。
"降低销售部第一年业绩优秀者(被评为优秀和卓越)的流失率"
确保你定义你的度量标准的细微差别,如... 你是指在公司的第一年,还是销售的第一年?你是否将一个在市场部工作了3年,然后转到销售部,然后在销售部工作9个月后离开公司的优秀员工计算在内?
从比率和幅度两方面量化(陈述当前有关的事实)你的首要指标。
2019年,我们在销售部门任职第一年的员工中,表现最好的员工离职率为23%。
2019年,这代表着在77个EE的总段上有17个EE离开。
为了实现全面的理解,需要从多个角度观察您的主要指标--这意味着在您可用的数据维度上对您的数据进行切片和切割。如果你有幸拥有强大的劳动力分析或商业智能工具,这将是简单的。如果你是在电子表格中进行计算,这将更具挑战性,所以要做好准备,并在这方面花费一些时间。
4)定义你的次要或支持性指标。Define your secondary and supporting metrics
次要指标或辅助指标是对您的分析很重要的额外数据维度和细分。这些次要指标和细分的程度实际上取决于您--但根据我们的经验,这是最有洞察力的观察和故事线的来源。
比如说 对你的数据进行细分和切片,这样你就可以了解是否有任何基于人口统计学、地点、经理、经理参加人事经理培训课程、招聘渠道、入职调查结果和参与度等方面的异常情况。
你只受限于你所能接触到的数据和你连接数据的能力。同样,如果你正在与人员分析合作伙伴合作,或者使用强大的BI工具,这将是相对容易的。如果你没有,你正在处理电子表格和断开的系统,卷起你的袖子,收起你的袖子......你需要时间和一些分析方面的专业知识。
5)进行量化观察--阐明 "什么"Articulate the ‘What’
使用您的二级指标,继续细分和分析您的数据,将观察重点放在异常点上(您的数据中的离群值、超过可接受阈值的热点、或问题的质量/规模可能代表机会或缺乏机会的地方)。
6)阐明 "什么背后的原因"Articulate the ‘Why’ behind the ‘What’
至此,你就会有一个关于销售业绩最高者流失的事实汇编,对象是任职第一年的员工。
掌握了这个多维度的分段分析,你必须深入挖掘故事线,了解故事发生的背景,并向那些最能阐述逻辑原因和假设的人询问 "为什么"。
这就是定性理解。
这可以通过各种技术来实现。例如,你可以选择与其他销售业绩最好的人进行一些焦点小组,那些在任职第二年的人可以对经验有所了解,你可能想实施或收获入职经验调查的数据,你可能想进行小组电话会议,1对1的或与经理的水冷/非正式谈话等。无论采用何种方法,这都是为了了解相关人员的生活经历,使数字活起来,并提供背景。
这里的目标是花一些时间深入挖掘,这样你就可以平衡你的事实和背景,并准备以更完整的方式讲述故事,尽可能多的纹理。
7)推动决策、变革案例、目标和变革计划。Drive Decisions, Case for Change, Targets and Change Plans
在我们看来,除非你愿意推动决策,并实施变革,否则开始这个过程的第一步是徒劳的,也是没有意义的。
肠胃检查:如果你不期望你的数据驱动的人力资源工作能够推动决策和变革,那么认真考虑一下,现在就停下来,专注于一些业务或你的人力资源团队会重视的事情。
决策必须在合作、协商和乐虎国际客户端支持下进行。因此,至关重要的是,您必须在之前的步骤中与您的LoB客户保持联系--并且能够获得事实、背景和意见。
业务线的决策都是关于投资回报率(ROI)的,这就需要制定一个变革案例。有些人可能会将其称为 "Pitch Deck",有些人则称为 "商业案例"。
不管怎么说,变革案例是一个10-15张幻灯片的总结和建议,其结构如下。
执行摘要
背景和情况
当前环境/问题的确定(事实和背景)
机会
拟议的解决方案和目标成果
成本和效益(ROI)
项目/实施办法
所需资源
B. 建议
下一步工作
目标是让你的利益相关者和受影响的合作伙伴相信变革是必要的,并帮助他们完成目标。
8)实施变革计划,稳定、衡量成功,实现价值。Implement, Measure Success, Stabilize and Realize Value
关于如何实施和创造可持续变革的更多信息,请参考Playbook 4,我们将在其中深入探讨这一主题。
值得注意的是,"商业案例实现 "非常容易被忽视--事实上,我们往往在取得成果之前就被迫系统地进入下一个活动--并比喻为 "将赢利存入银行"。
你必须不惜一切代价尽量避免这个陷阱。
记住,你被信任投资于数据驱动的人力资源的唯一原因是为了追求多汁的业务成果。
你已经在商业案例上出售了这一举措--所以你必须花一些时间来量化和计算你的成就和成功--并与那些重要的人分享。
简单地确定你的举措的投资回报率
在投资回报率等式的一边,你将阐明你通过这一举措创造的 "新价值"。
在等式的另一边,阐明该举措的成本(在这个项目中工作的天数可以转换为每天的内部负荷成本率)。你将以此为分母。
从新价值中减去成本,并将结果称为 "净新价值"--将其作为分子。
将净新价值除以成本,然后乘以100。
现在,你就有了这个数据驱动的人力资源项目的投资回报率。
鉴于这是一个巨大的未开发领域--利益池可以是壮观的。
下面是我们PeopleInsight的一个技术客户的例子。
在实施了分析工具后,一个特定的关键技术角色的营业额在第一年内下降了25%,这些工具使经理们能够深入了解他们的营业额--使他们能够快速地进行细分。
副总裁和人力资源部门将这些影响直接归因于透明度的提高。
这导致今年避免了约75万美元的成本。
投资成本不到2.5万美元。
净新价值为75万美元-2.5万美元=72.5万美元。
这笔数据驱动的人力资源投资的投资回报率是。 (72.5万除以2.5万) x100 = 2,900%。
是,2,900%
一旦你意识到了价值,你就必须将其传达给大家并加以庆祝。然后从中学习,并在此基础上再接再厉。在你的下一个人力资源分析项目中保持这种势头。
作者:PeopleInsight
以上由智能AI翻译完成,仅供参考