• chatbot
    e成科推出校招AI面试机器人Chatbot 文/e成君 很多HR朋友在校招季每天要面对大量的毕业生简历,基于此等现状,e成科推出了校招AI面试机器人Chatbot。 Chatbot面试机器人到底是什么?  Chatbot面试机器人,是e成科技历经数年时间研发出来的AI校招工具,结合了AI和大数据,通过人工智能系统记录和分析与应聘者的整个线上讨论过程,评估出面试者的表现情况,从而助力企业加速数字化人才决策进程。   在招聘过程中Chatbot充当AI面试官,智能匹配人才 开启Chatbot面试机器人非常简单,只要大学生们登录校招官网,完成简历投递,并扫描职位后方的二维码,就能直接与e成的Chatbot面试机器人进行初轮面试了。 Chatbot面试机器人会把和大学生面试的整个对话过程记录下来,进行语义解析。它采用的是微信原生的语音识别技术,支持语音对话。基于大学生的语音特征,Chatbot面试机器人将建立个性化的词条语言模型,持续优化识别效果,提高个性化词条识别准确率。而语义解析,是基于AI实现信息提取,通过云计算的精准算法达到筛选目的。在语义解析的过程中,Chatbot面试机器人还增加了面试者情绪、情感等多方面的分析,能够准确地评估出面试者的表现。   Chatbot机器人VS真人面试 智能面试,多维度考查大学生职业能力 校招季,应聘者数量将是平时的好几倍,不分时间不分地点,投递简历。加上HR朋友们没办法全天候守在电脑前筛选简历、通知面试,安排初试,无法一一面试每一个候选人。 Chatbot机器人面试官通过语音对话的方式,从候选人个人素质,沟通能力,团队合作能力,创新能力等方面,多角度提问,从对话的过程中了解候选人的职业能力,实时评估出该面试者是否匹配岗位要求。 不仅如此,Chatbot机器人面试官还可同时面试上千名应届生,极大缩减了公司的招聘成本。   智能性格测评,高效挖掘大学生潜在匹配点 实际面试过程中,同一岗位的应聘者由于学校、专业、成绩等各方面水平基本相差无几,根本无从选择,让HR头痛不已。 e成AI校园招聘解决方案为了解决这个难题,在Chatbot面试机器人中内置了大量专业性格测试题库,通过性格测试来甄别符合企业价值观、符合企业招聘岗位需求的候选人,帮助企业做出最佳的人才匹配。 HR可根据企业需求,自主选择所需要的题目内容,测试候选人的综合素养、综合能力,包括人品、修养、勤奋度、责任感、协作精神等,评估该应届生能否在入职后达到企业期望目标,能否融入团队,给企业带来价值贡献。 测试结束后,测试结果将实时通过可视化结果形式传达给HR和应届生,直观展示应届生的性格特征。 如果应届生条件匹配岗位要求,顺利通过了面试,Chatbot面试机器人会很快安排真人HR的正式面试;如果不匹配,会向应届生推荐其它适合的岗位。   智能雇品,校招初面中建立雇主品牌形象 众所周知,雇主品牌作为企业品牌的一部分,许多求职者也是雇主“产品”的消费者。良好的雇主品牌能传递企业文化和价值观,并吸引符合核心价值观的匹配人才加入企业。在人才选拔初期,HR和应届生深入接触,这个阶段往往是给潜在员工留下良好印象、提升雇主品牌的最佳时机。 然而,大多数企业并没有意识到雇品形象在校园中的影响力,直接导致校招过程中投递量少,无法满足企业的招聘目标;其次,很多应届生直至面试结束,对企业和岗位仍是一知半解。因此,在潜在员工中树立雇主品牌形象,成为了校招过程中不可或缺的一步。 基于此, Chatbot机器面试官提供公司背景、公司文化等信息供面试者阅览,在校招初始阶段,就给潜在员工植入企业雇主品牌形象,让面试者更了解公司的同时提升了雇主品牌形象,吸引更多优秀人才加入。   除此之外,Chatbot面试机器人还具备机器学习能力  Chatbot面试机器人实现以云数据为基础,具有机器学习能力。语料信息库中,存储的不只是产品设计师设定的回答,还有一部分回答是机器在自我训练及学习中逐渐形成的。在和面试者对话的过程中,不仅支持在庞大的语料信息库里抓取原有数据,还可以对有价值的语料信息进行结构性重组,让面试者忘记自己正面对着“机器人”面试官。 从大学生投递简历的那一刻起,Chatbot面试机器人的系统迭代就进入了良性循环,它越符合面试的需求,黏性将越高,获得的校招数据就更多,从而形成一个完美的闭环。 经过Chatbot面试机器人的初步面试,能够识别重复投递的简历以及不同工作岗位的简历,为HR节约面试时间,将HR从大量重复性的、耗时的且毫无成就感的初步面试工作中解放出来。
    chatbot
    2018年07月06日
  • chatbot
    英文赏析:Will a Chat Bot Be Your Next Learning Coach? By Margie Meacham Eighty percent of major companies expect to be using artificial intelligence by 2020, but their training departments are likely to be the last places you’ll find it. We need to fix that. A recent survey of Millennials revealed that 40 percent of them interact with a chat bot, a program that simulates a human conversation, on a daily basis; another survey indicates that many people prefer chat bots over humans for certain types of customer support transactions. While other industries are already developing AI, the learning industry seems to be lagging behind. It’s pretty hard to implement something you don’t understand, so let’s start there. Artificial Intelligence Artificial intelligence, or AI, is a branch of computer science that aims to create intelligent machines, capable of performing problem-solving, pattern recognition, and learning without explicit programming. AI requires vast amounts of data to create intelligent machines, and Big Data requires intelligent machines to perform the massive calculations necessary to find meaningful patterns and connections. For this reason, you will often find Big Data and AI are employed together and support each other. Big Data “Big Data” refers to data sets that are so voluminous and complex that traditional data processing application software packages are inadequate to deal with them. Big Data challenges include capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying, updating, and information privacy. Big Data analytics examines these massive, varied data sets to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information that drives artificial intelligence. 3 Dimensions of Big Data There are three dimensions to Big Data: velocity, variety, and volume. Velocity Data is coming at us from all directions, and it is coming faster every day. To benefit from Big Data insights, companies must be able to capture, analyze, and use this massive amount of information as quickly as it is coming in. Human beings alone could never keep up with this firehose of information, so Big Data solutions must include strategies to control and keep up with the speed of incoming data. Bring in the smart machines! Variety Consider your own experience as a digital consumer. In a single hour, you may read an email on your PC, send a text on your phone, download a podcast, watch a video, and post a tweet. Each requires different strategies for capture and analysis—and these are only a few examples of the diversity of data available online today. VolumeHere is just a snapshot of the sheer volume of data that came at us every day of 2017: 456,000 tweets on Twitter 50,926 videos viewed on Buzzfeed 3,607,080 Google searches. The amount of data coming from your learning management system (LMS) and performance management software is puny compared to the onslaught coming from social media; but it is part of the Big Data mosaic, and most of us are simply not taking advantage of the information we have readily available. Machine Learning Machine learning is an application of AI that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Advertisement In other words, machine learning focuses on the development of computer programs that can access large amounts of data and change their behavior or programming based on that information, without human intervention. Uses for machine learning in talent development include: Assess and predict job performance. Predict the competencies that will be needed in 10 years so learners can develop relevant skills today. Provide personalized conversation about new information, performance coaching, or motivation on a 24-hour basis, without the need for a human coach. Identify learner competencies and gaps to make better training and education suggestions that are truly personalized to the individual. Examples of AI in Talent Development Here are just a few examples of education-focused AIs that are already in use. Many early adopters are in the higher education arena, but the ideas work equally well in corporate training or K-12 education. Jill Watson, the virtual teaching assistant at the University of Georgia, communicates with students via email. Virtual tutors can help each learner move at a pace that is right for them. Penn State is using chat bots to help teachers gain confidence handling difficult conversations, like bullying or hate language in class. Think grading essays requires the human touch? Think again! At Stanford, an AI grading system achieved an 81 percent accuracy rate when compared to essays graded by humans. Beware These Beginner Mistakes Because some AI applications are still in the early days on the hype cycle, I interviewed an AI expert at one of my client organizations to find out what common mistakes she sees in chat bot projects led by early adopters. Here’s a summary of her list. Garbage In/Garbage Out (GIGO) Many projects fail because project managers forget to check data quality, or do not have the right approach to identify and resolve these issues. When we analyze incomplete or “dirty” data sets, our AI ends up making decisions and recommendations based on a poor foundation. Apples and Oranges Comparing unrelated data sets or data points will result in inferring relationships or similarities that do not exist. Overly Narrow Focus Some projects are designed to consider one data set without considering other data points that might be crucial for the analysis. For example, a project set up to analyze learner pass/fail rates while ignoring the course completion rate may inflate performance results. Cool but Useless Some AI projects are quick to deliver but fail to make a significant impact on the learner’s everyday experience. Ensure that you have the right strategy to deliver the most value to your learners, and avoid giving them something cool that doesn’t really help them learn. Getting Started My advice is to just get on with it. Make a point of learning something about AI and machine learning every day, always with an eye to how you might be able to use it in your own organization. Here are a few suggestions: Check out datascience.com for a huge list of data science resources. Take this course from Google on Udacity—it’s free, and quite well done. Brainstorm some ideas with colleagues. There are some great ideas here, and even more ideas here. Build a Bot There are dozens of platforms that let you create free chat bots for specific messaging apps without any special skills or coding knowledge. Snatchbot, for example, can be used on Facebook Messenger, Slack, WeChat, Skype, and more. It’s easy to use, and the interface is probably already familiar to many of your users. And Botsify has a variety of bot templates to get you started, including a whole list of education bots. Looking for more do-it-yourself tools? Here’s a nice list from business2community. com. Engage With Colleagues You might be surprised how many of your colleagues are eager to test the waters with a chat bot or other educational AI application. You won’t find them unless you join the conversation. One place to start is by attending the ATD 2018 International Conference & Exposition (for example, Elliott Masie will talk about some innovations changing workplace learning during the session, Learning Trends, Disrupters, and Hype in 2018) or any of our other conferences designed to educate, engage, and inspire you. Will You Be Replaced by a Chat Bot? While there is a vast difference of opinion on how AI is shaping the very near future of work and learning, one thing I know for sure: Those of us who are not part of the disruption will become lost in the dust that the disruptors kick up. I plan on being in front of it   Margie Meacham is an adult learning expert with a master of science in learning technologies and more than 15 years of experience in the field. A self-described “scholar-practitioner,” Margie collaborates with like-minded instructional designers to find practical applications of neuroscience to instructional design.
    chatbot
    2018年02月19日
  • chatbot
    AI 人工智能中对HR的常见术语解释,没事可以了解下 在工作环境中准备人工智能对于技术厌恶的招聘团队来说是一个令人望而生畏的。 对于那些探索他们的业务意味着什么,这里有8个基本的解释开始: 算法:算法是在解决问题或计算中应遵循的一组规则。算法需要在招聘过程中生成大量数据,并将其转换为HR可用于候选人选择的信息。在之前的一项研究中,通过算法招聘的候选人比人力资源招聘的人员长15%。算法有助于提高候选人的选择并减少不良招聘的可能性。 人工智能(AI):人工智能(AI)通常被称为“第四次工业革命”,它是一种能够模仿智能人类行为的机器,其中包括做决策和执行基本任务,如解决问题,计划和学习。AI可以自动执行重复和平凡的管理任务,包括整个招聘过程中的筛选和申请人更新。这也是聊天机器人的兴起和视频放映的使用背后的原因。 聊天机器人:聊天机器人的简称,聊天机器人在人才获取方面越来越多。与苹果的Siri或亚马逊的Alexa一样,招聘中的聊天机器人使用人工智能(例如,机器学习 - 见下文)来理解问题并作出回应。Chatbots可以在不同的平台上使用,包括电子邮件,消息应用程序和通过您的申请人跟踪软件。Chatbots旨在模拟与您就业网站的访问者的对话,并正在迅速成为高容量招聘的基本技术工具。聊天机器人有效地使用,为您的招聘过程添加更吸引人的互动元素。今年早些时候进行的一项调查发现,在申请过程中,超过一半的候选人愿意与聊天机器人进行互动。 游戏化:游戏化将游戏的常见元素应用于其他在线活动领域,包括市场营销。在招聘过程中,毕业生雇主经常使用劳埃德银行集团,德勤和普华永道倍受青睐的Multipoly,以吸引年轻人才,创造更具吸引力的候选人经验。通过人力资源技术将游戏化融入您的招聘流程中。 机器学习:类似于人工智能,机器学习为AI提供了更智能的算法。在招聘中,机器学习可以减少您的聘用时间,并用于自动化候选人筛选,通常利用招聘分析中与最成功的人员相关的数据。人力资源软件中复杂的机器学习算法可用于通过语言选择甚至面部表情来评估候选人的潜在文化适应性。 人员分析:人员分析将数据和分析结合起来,深入了解与员工相关的一系列问题,包括领导力,绩效管理和招聘。要了解更多信息,请参阅我们以前的文章,其中提供了有关人员分析的更详细的介绍。 情绪分析:这可能不是你熟悉的词,但情绪分析解释了语言对人的影响,无论是消极的,积极的还是中立的。在招聘时可以用来分析你的工作岗位的措辞的影响。例如,去年我们报道说,在社交媒体平台Buffer的“工作岗位”中用'开发者'取代'黑客'这个词,看到女性候选人申请空缺的人数有所增加。在招聘软件中的人力资源分析提供了更多的洞察力,如何使用特定的话可以阻止人才适用于您的工作。使用情感分析的软件也可以提出更合适的词汇来吸引更多元化的人才库。 图灵测试:图灵测试是由科学家阿兰·图灵(Alan Turing)在1950年设想的,前提是“机器可以想象?今天,它指的是人工智能的潜力,以说服人们,而不是一个机器与人互动。其中最成功的例子是第三次获得2017年Loebner奖(基于图灵测试)的Mitsuku聊天机器人,但尚未说服评委是人类。 随着工作场所的自动化程度的提高,这是一个与AI有关的术语。   以上由AI 自动翻译。     Algorithms : An algorithm is a set of rules to be followed in a problem solving situation or calculation. Algorithms take large amounts of data generated during the hiring process and transform it into information that HR can use in candidate selection. In a previous study, candidates recruited via algorithms remained in their job 15% longer than those hired by HR. Algorithms help to improve candidate selection and reduce the potential for a bad hire. Artificial Intelligence (AI) : Often referred to as the ‘fourth industrial revolution’, artificial intelligence (AI) is a machine that is capable of imitating intelligent human behaviour, which includes making decisions and performing basic tasks such as problem solving, planning and learning. AI automates repetitive and mundane admin tasks, including screening and applicant updates throughout the hiring process. It is also behind the rise in chatbots and the use of video screening. Chatbots : Short for chat robot, chatbots are becoming more prolific in talent acquisition. Like Apple’s Siri or Amazon’s Alexa, chatbots in recruitment use artificial intelligence (eg, machine learning - see below) to comprehend questions and respond. Chatbots can be used across different platforms, including e-mail, messaging apps and through your applicant tracking software. Chatbots are designed to simulate conversations with visitors to your careers site and are rapidly becoming an essential tech tool for high volume recruitment. Used effectively, chatbots add a more engaging and interactive element to your hiring process. A survey carried out earlier this year found that over half of candidates are comfortable interacting with chatbots during the application process.[1] Gamification : Gamification applies the common elements of game playing to other areas of online activity, including marketing. In recruitment it is frequently used by graduate employers, including Lloyds Banking Group, Deloitte and in PwC’s popular Multipoly to attract young talent and create a more engaging candidate experience. Incorporate gamification into your recruitment process through your HR technology. Machine learning : Similar to artificial intelligence, machine learning provides AI with the algorithms that make it more intelligent. In hiring, machine learning can reduce your time to hire and is used to automate candidate screening, often utilising the data available in your recruitment analytics relating to your most successful hires. Sophisticated machine learning algorithms in HR software can be used to evaluate the potential cultural fit of a candidate through language choice and even facial expressions. People analytics : People analytics combines data and analysis to gain insight into a range of issues related to your employees, including leadership, performance management and recruitment. For more insight, please see our previous article which provides a more detailed introduction to people analytics. Sentiment analysis : It may not be a term you are familiar with but sentiment analysis interprets the effect that language has on people, whether negative, positive or neutral. In recruitment it can be used to analyse the impact of the wording of your job posts. For example, last we year we reported that by replacing the word ‘hacker’ with ‘developer’ in their job posts, social media platform Buffer saw an increase in the number of female candidates applying to their vacancies. HR analytics in your recruitment software provide more insight into how the use of specific words can deter talent from apply to your jobs. Software which uses sentiment analysis can also suggest more suitable words to attract a more diverse talent pool. The Turing Test : The Turing Test was conceived by scientist Alan Turing in 1950 based on the premise 'can machines think?' Today it refers to the potential for artificial intelligence to convince people they are interacting with a person rather than a machine. One of the most successful examples is the Mitsuku chatbot which has been awarded the 2017 Loebner Prize[2] (based on the Turing Test) for the third time but has yet to convince the judges it is human. It's a term you may hear more of in relation to AI as automation in the workplace rises.
    chatbot
    2018年02月12日
  • chatbot
    AI遇阻?Chatbot 错误率高达70% Facebook削减AI投资 据外媒报道,由于Messenger聊天机器人的错误率高达70%,Facebook已决定削减对机器学习和人工智能技术的投资。 聊天机器人错误率高达70% Facebook削减AI投资 外媒称,Facebook将暂时放弃打造大型聊天机器人生态系统,而转向于训练Messenger机器人专注处理一些特定任务。以后,我们不会再只能听到聊天机器人无聊的唠嗑了。 Facebook在去年强化了其Messenger bot(聊天机器人)平台,允许企业与Messenger应用的庞大用户群进行互动,比如电商等各种基于在线服务业态都可以是bot的应用场景。 那时,Facebook对bot开放平台的商业前景给予了厚望,认为其可以替代一部分人工客服,降低公司运营成本。 据了解,自Facebook开放Messenger bot以来,得到银行和航空公司等企业大力拥护。截至去年9月,开发者已开发出了3万个聊天机器人。 不过,日前有外媒报道指出,其目前的结果并不如人意。因为Messenger的错误率高达70%,即用户70%的请求都无法完成。 国外分析师 Richard Windsor指出,Facebook在尝试将其系统自动化的过程中做了太多错误的决策。“问题不是 Facebook 缺乏这方面的人才,而是该公司在人工智能方面的研究没有足够久。”(周小白) 推荐阅读
    chatbot
    2017年03月08日
  • 123